Elliptic genera of 2d (0,2) gauge theories from brane brick models

Abstract

We compute the elliptic genus of abelian 2d (0, 2) gauge theories corresponding to brane brick models. These theories are worldvolume theories on a single D1-brane probing a toric Calabi-Yau 4-fold singularity. We identify a match with the elliptic genus of the non-linear sigma model on the same Calabi-Yau background, which is computed using a new localization formula. The matching implies that the quantum effects do not drastically alter the correspondence between the geometry and the 2d (0, 2) gauge theory. In theories whose matter sector suffers from abelian gauge anomaly, we propose an ansatz for an anomaly cancelling term in the integral formula for the elliptic genus. We provide an example in which two brane brick models related to each other by Gadde-Gukov-Putrov triality give the same elliptic genus.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    E. Witten, Phases of N = 2 theories in two-dimensions, Nucl. Phys. B 403 (1993) 159 [hep-th/9301042] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    K. Hori and D. Tong, Aspects of Non-Abelian Gauge Dynamics in Two-Dimensional N = (2,2) Theories, JHEP 05 (2007) 079 [hep-th/0609032] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. [3]

    J. Distler and S. Kachru, (0, 2) Landau-Ginzburg theory, Nucl. Phys. B 413 (1994) 213 [hep-th/9309110] [INSPIRE].

  4. [4]

    E. Silverstein and E. Witten, Global U(1) R symmetry and conformal invariance of (0, 2) models, Phys. Lett. B 328 (1994) 307 [hep-th/9403054] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    A. Gadde, S. Gukov and P. Putrov, (0, 2) trialities, JHEP 03 (2014) 076 [arXiv:1310.0818] [INSPIRE].

  6. [6]

    A. Gadde, S. Gukov and P. Putrov, Exact Solutions of 2d Supersymmetric Gauge Theories, arXiv:1404.5314 [INSPIRE].

  7. [7]

    K. Mohri, D-branes and quotient singularities of Calabi-Yau fourfolds, Nucl. Phys. B 521 (1998) 161 [hep-th/9707012] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. [8]

    H. Garcia-Compean and A.M. Uranga, Brane box realization of chiral gauge theories in two-dimensions, Nucl. Phys. B 539 (1999) 329 [hep-th/9806177] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, arXiv:1306.4320 [INSPIRE].

  10. [10]

    S. Franco, D. Ghim, S. Lee, R.-K. Seong and D. Yokoyama, 2d (0, 2) Quiver Gauge Theories and D-branes, JHEP 09 (2015) 072 [arXiv:1506.03818] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  11. [11]

    S. Franco, S. Lee and R.-K. Seong, Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d (0, 2) Quivers, JHEP 02 (2016) 047 [arXiv:1510.01744] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S. Franco, S. Lee and R.-K. Seong, Brane brick models and 2d (0, 2) triality, JHEP 05 (2016) 020 [arXiv:1602.01834] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    S. Franco, S. Lee, R.-K. Seong and C. Vafa, Brane Brick Models in the Mirror, JHEP 02 (2017) 106 [arXiv:1609.01723] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    S. Franco, S. Lee and R.-K. Seong, Orbifold Reduction and 2d (0, 2) Gauge Theories, JHEP 03 (2017) 016 [arXiv:1609.07144] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    F. Benini and N. Bobev, Exact two-dimensional superconformal R-symmetry and c-extremization, Phys. Rev. Lett. 110 (2013) 061601 [arXiv:1211.4030] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    F. Benini, N. Bobev and P.M. Crichigno, Two-dimensional SCFTs from D3-branes, JHEP 07 (2016) 020 [arXiv:1511.09462] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    R. Tatar, Geometric Constructions of Two Dimensional (0, 2) SUSY Theories, Phys. Rev. D 92 (2015) 045006 [arXiv:1506.05372] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. [18]

    S. Schäfer-Nameki and T. Weigand, F-theory and 2d (0, 2) theories, JHEP 05 (2016) 059 [arXiv:1601.02015] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, UV Completions for Non-Critical Strings, JHEP 07 (2016) 045 [arXiv:1602.04221] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    F. Apruzzi, F. Hassler, J.J. Heckman and I.V. Melnikov, From 6D SCFTs to Dynamic GLSMs, arXiv:1610.00718 [INSPIRE].

  21. [21]

    A. Gadde and S. Gukov, 2d Index and Surface operators, JHEP 03 (2014) 080 [arXiv:1305.0266] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465 [arXiv:1305.0533] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d N = 2 Gauge Theories, Commun. Math. Phys. 333 (2015) 1241 [arXiv:1308.4896] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  24. [24]

    F. Benini and B. Le Floch, Supersymmetric localization in two dimensions, arXiv:1608.02955 [INSPIRE].

  25. [25]

    L.C. Jeffrey and F.C. Kirwan, Localization for nonabelian group actions, Topology 34 (1995) 291 [alg-geom/9307001].

    MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    W. Lerche, Elliptic Index and Superstring Effective Actions, Nucl. Phys. B 308 (1988) 102 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    D. Martelli, J. Sparks and S.-T. Yau, Sasaki-Einstein manifolds and volume minimisation, Commun. Math. Phys. 280 (2008) 611 [hep-th/0603021] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    F. Benini and N. Bobev, Two-dimensional SCFTs from wrapped branes and c-extremization, JHEP 06 (2013) 005 [arXiv:1302.4451] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    S. Cecotti, P. Fendley, K.A. Intriligator and C. Vafa, A new supersymmetric index, Nucl. Phys. B 386 (1992) 405 [hep-th/9204102] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. [30]

    M. Koloğlu, Quantum Vacua of 2d Maximally Supersymmetric Yang-Mills Theory, arXiv:1609.08232 [INSPIRE].

  31. [31]

    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS Operators in Gauge Theories: Quivers, Syzygies and Plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. [32]

    J.J. Duistermaat and G.J. Heckman, On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982) 259.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. [33]

    D. Ghim, J.-W. Kim and S. Lee, Elliptic Genus of 2d (0, 2) Non-linear Sigma Models, to appear.

  34. [34]

    T. Kawai and K. Mohri, Geometry of (0, 2) Landau-Ginzburg orbifolds, Nucl. Phys. B 425 (1994) 191 [hep-th/9402148] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  35. [35]

    S. Lee and S. Lee, Klebanov-Witten Flows in M-theory, JHEP 09 (2012) 098 [arXiv:1207.7169] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    J. Davey, A. Hanany and R.-K. Seong, Counting Orbifolds, JHEP 06 (2010) 010 [arXiv:1002.3609] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    R. Dijkgraaf, G.W. Moore, E.P. Verlinde and H.L. Verlinde, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys. 185 (1997) 197 [hep-th/9608096] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    C. Closset, W. Gu, B. Jia and E. Sharpe, Localization of twisted \( \mathcal{N} \) = (0, 2) gauged linear σ-models in two dimensions, JHEP 03 (2016) 070 [arXiv:1512.08058] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    K. Hori et al., Mirror Symmetry, Clay Mathematics Monographs, American Mathematical Society (2003).

  40. [40]

    R. Blumenhagen and E. Plauschinn, Introduction to Conformal Field Theory: With Applications to String Theory, Lecture Notes in Physics, Springer Berlin Heidelberg (2009).

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sangmin Lee.

Additional information

ArXiv ePrint: 1702.02948

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Franco, S., Ghim, D., Lee, S. et al. Elliptic genera of 2d (0,2) gauge theories from brane brick models. J. High Energ. Phys. 2017, 68 (2017). https://doi.org/10.1007/JHEP06(2017)068

Download citation

Keywords

  • Conformal Field Theory
  • D-branes
  • Duality in Gauge Field Theories
  • Supersymmetry and Duality