Indirect searches of Galactic diffuse dark matter in INO-MagICAL detector

  • Amina KhatunEmail author
  • Ranjan Laha
  • Sanjib Kumar Agarwalla
Open Access
Regular Article - Experimental Physics


The signatures for the existence of dark matter are revealed only through its gravitational interaction. Theoretical arguments support that the Weakly Interacting Massive Particle (WIMP) can be a class of dark matter and it can annihilate and/or decay to Standard Model particles, among which neutrino is a favorable candidate. We show that the proposed 50 kt Magnetized Iron CALorimeter (MagICAL) detector under the India-based Neutrino Observatory (INO) project can play an important role in the indirect searches of Galactic diffuse dark matter in the neutrino and antineutrino mode separately. We present the sensitivity of 500 kt·yr MagICAL detector to set limits on the velocity-averaged self-annihilation cross-section (〈σv〉) and decay lifetime (τ ) of dark matter having mass in the range of 2 GeV ≤ m χ ≤ 90 GeV and 4 GeV ≤ m χ ≤ 180 GeV respectively, assuming no excess over the conventional atmospheric neutrino and antineutrino fluxes at the INO site. Our limits for low mass dark matter constrain the parameter space which has not been explored before. We show that MagICAL will be able to set competitive constraints, 〈σv〉 ≤ 1.87 × 10−24 cm3 s−1 for \( \chi \chi \to \nu \overline{\nu} \) and τ ≥ 4.8 × 1024 s for \( \chi\ \to\ \nu \overline{\nu} \) at 90% C.L. (1 d.o.f.) for m χ = 10 GeV assuming the NFW as dark matter density profile.


Dark matter Neutrino Detectors and Telescopes (experiments) Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln (in German), Helv. Phys. Acta 6 (1933) 110 [Gen. Relativ. Grav. 41 (2009) 207] [INSPIRE].
  3. [3]
    V.C. Rubin and W.K. Ford, Jr., Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. 159 (1970) 379 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    L.E. Strigari, Galactic searches for dark matter, Phys. Rept. 531 (2013) 1 [arXiv:1211.7090] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Clowe et al., A direct empirical proof of the existence of dark matter, Astrophys. J. 648 (2006) L109 [astro-ph/0608407] [INSPIRE].
  6. [6]
    WMAP Science Team collaboration, E. Komatsu et al., Results from the Wilkinson Microwave Anisotropy Probe, Prog. Theor. Exp. Phys. 2014 (2014) 06B102 [arXiv:1404.5415] [INSPIRE].
  7. [7]
    G. Steigman, Neutrinos and big bang nucleosynthesis, Adv. High Energy Phys. 2012 (2012) 268321 [arXiv:1208.0032] [INSPIRE].CrossRefzbMATHGoogle Scholar
  8. [8]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].
  9. [9]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  10. [10]
    L. Bergström, Nonbaryonic dark matter: observational evidence and detection methods, Rept. Prog. Phys. 63 (2000) 793 [hep-ph/0002126] [INSPIRE].
  11. [11]
    J. Ellis and K.A. Olive, Supersymmetric dark matter candidates, arXiv:1001.3651 [INSPIRE].
  12. [12]
    DAMA, LIBRA collaboration, R. Bernabei et al., New results from DAMA/LIBRA, Eur. Phys. J. C 67 (2010) 39 [arXiv:1002.1028] [INSPIRE].
  13. [13]
    LUX collaboration, D.S. Akerib et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data, Phys. Rev. Lett. 116 (2016) 161301 [arXiv:1512.03506] [INSPIRE].
  14. [14]
    SuperCDMS collaboration, R. Agnese et al., New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  15. [15]
    XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
  16. [16]
    DarkSide collaboration, P. Agnes et al., Results from the first use of low radioactivity argon in a dark matter search, Phys. Rev. D 93 (2016) 081101 [arXiv:1510.00702] [INSPIRE].
  17. [17]
    PandaX collaboration, X. Xiao et al., Low-mass dark matter search results from full exposure of the PandaX-I experiment, Phys. Rev. D 92 (2015) 052004 [arXiv:1505.00771] [INSPIRE].
  18. [18]
    M. Lindner, A. Merle and V. Niro, Enhancing dark matter annihilation into neutrinos, Phys. Rev. D 82 (2010) 123529 [arXiv:1005.3116] [INSPIRE].ADSGoogle Scholar
  19. [19]
    S.K. Agarwalla, M. Blennow, E. Fernandez Martinez and O. Mena, Neutrino probes of the nature of light dark matter, JCAP 09 (2011) 004 [arXiv:1105.4077] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    Y. Farzan, Flavoring monochromatic neutrino flux from dark matter annihilation, JHEP 02 (2012) 091 [arXiv:1111.1063] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    P. Mijakowski, Direct and indirect search for dark matter, Ph.D. thesis, Inst. Nucl. Studies, Warsaw Poland, (2011) [INSPIRE].
  22. [22]
    M. Blennow, M. Carrigan and E. Fernandez Martinez, Probing the dark matter mass and nature with neutrinos, JCAP 06 (2013) 038 [arXiv:1303.4530] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Gustafsson, T. Hambye and T. Scarna, Effective theory of dark matter decay into monochromatic photons and its implications: constraints from associated cosmic-ray emission, Phys. Lett. B 724 (2013) 288 [arXiv:1303.4423] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C. El Aisati, M. Gustafsson, T. Hambye and T. Scarna, Dark matter decay to a photon and a neutrino: the double monochromatic smoking gun scenario, Phys. Rev. D 93 (2016) 043535 [arXiv:1510.05008] [INSPIRE].ADSGoogle Scholar
  25. [25]
    L.A. Anchordoqui et al., IceCube neutrinos, decaying dark matter and the Hubble constant, Phys. Rev. D 92 (2015) 061301 [arXiv:1506.08788] [INSPIRE].ADSGoogle Scholar
  26. [26]
    C. Arina, S. Kulkarni and J. Silk, Monochromatic neutrino lines from sneutrino dark matter, Phys. Rev. D 92 (2015) 083519 [arXiv:1506.08202] [INSPIRE].ADSGoogle Scholar
  27. [27]
    V. González-Macías and J. Wudka, Effective theories for dark matter interactions and the neutrino portal paradigm, JHEP 07 (2015) 161 [arXiv:1506.03825] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    V. González-Macías, J.I. Illana and J. Wudka, A realistic model for dark matter interactions in the neutrino portal paradigm, JHEP 05 (2016) 171 [arXiv:1601.05051] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    J.D. Zornoza, Indirect search for dark matter with neutrino telescopes, arXiv:1601.05691 [INSPIRE].
  30. [30]
    C. Garcia-Cely and J. Heeck, Neutrino lines from Majoron dark matter, JHEP 05 (2017) 102 [arXiv:1701.07209] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.F. Beacom, N.F. Bell and G.D. Mack, General upper bound on the dark matter total annihilation cross section, Phys. Rev. Lett. 99 (2007) 231301 [astro-ph/0608090] [INSPIRE].
  32. [32]
    H. Yuksel, S. Horiuchi, J.F. Beacom and S. Ando, Neutrino constraints on the dark matter total annihilation cross section, Phys. Rev. D 76 (2007) 123506 [arXiv:0707.0196] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Fermi-LAT collaboration, M. Ackermann et al., Updated search for spectral lines from galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope, Phys. Rev. D 91 (2015) 122002 [arXiv:1506.00013] [INSPIRE].
  34. [34]
    R. Laha, K.C.Y. Ng, B. Dasgupta and S. Horiuchi, Galactic center radio constraints on gamma-ray lines from dark matter annihilation, Phys. Rev. D 87 (2013) 043516 [arXiv:1208.5488] [INSPIRE].ADSGoogle Scholar
  35. [35]
    CMS collaboration, Search for dark matter and unparticles produced in association with a Z boson in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 93 (2016) 052011 [arXiv:1511.09375] [INSPIRE].
  36. [36]
    CMS collaboration, Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy, Phys. Rev. Lett. 108 (2012) 261803 [arXiv:1204.0821] [INSPIRE].
  37. [37]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802 [arXiv:1209.4625] [INSPIRE].
  38. [38]
    A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOνA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.M. Devi, T. Thakore, S.K. Agarwalla and A. Dighe, Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information, JHEP 10 (2014) 189 [arXiv:1406.3689] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    ICAL collaboration, S. Ahmed et al., Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].
  41. [41]
    L.S. Mohan and D. Indumathi, Pinning down neutrino oscillation parameters in the 2-3 sector with a magnetised atmospheric neutrino detector: a new study, Eur. Phys. J. C 77 (2017) 54 [arXiv:1605.04185] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Thakore, A. Ghosh, S. Choubey and A. Dighe, The reach of INO for atmospheric neutrino oscillation parameters, JHEP 05 (2013) 058 [arXiv:1303.2534] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    D. Kaur, M. Naimuddin and S. Kumar, The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters, Eur. Phys. J. C 75 (2015) 156 [arXiv:1409.2231] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    N. Dash, V.M. Datar and G. Majumder, Sensitivity of the INO-ICAL detector to magnetic monopoles, Astropart. Phys. 70 (2015) 33 [arXiv:1406.3938] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Chatterjee, R. Gandhi and J. Singh, Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos, JHEP 06 (2014) 045 [arXiv:1402.6265] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Chatterjee, P. Mehta, D. Choudhury and R. Gandhi, Testing nonstandard neutrino matter interactions in atmospheric neutrino propagation, Phys. Rev. D 93 (2016) 093017 [arXiv:1409.8472] [INSPIRE].ADSGoogle Scholar
  47. [47]
    S. Choubey, A. Ghosh, T. Ohlsson and D. Tiwari, Neutrino physics with non-standard interactions at INO, JHEP 12 (2015) 126 [arXiv:1507.02211] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S.P. Behera, A. Ghosh, S. Choubey, V.M. Datar, D.K. Mishra and A.K. Mohanty, Search for the sterile neutrino mixing with the ICAL detector at INO, Eur. Phys. J. C 77 (2017) 307 [arXiv:1605.08607] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    R. de Grijs and G. Bono, Clustering of local group distances: publication bias or correlated measurements? IV. The galactic center, Astrophys. J. Suppl. 227 (2016) 5 [arXiv:1610.02457].
  50. [50]
    J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].
  51. [51]
    J. Diemand, M. Kuhlen and P. Madau, Dark matter substructure and gamma-ray annihilation in the milky way halo, Astrophys. J. 657 (2007) 262 [astro-ph/0611370] [INSPIRE].
  52. [52]
    J. Stadel et al., Quantifying the heart of darkness with GHALO — a multi-billion particle simulation of our galactic halo, Mon. Not. Roy. Astron. Soc. 398 (2009) L21 [arXiv:0808.2981] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J.F. Navarro et al., The diversity and similarity of cold dark matter halos, Mon. Not. Roy. Astron. Soc. 402 (2010) 21 [arXiv:0810.1522] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    G. Stinson, C. Brook, A.V. Maccio, J. Wadsley, T.R. Quinn and H.M.P. Couchman, Making galaxies in a cosmological context: the need for early stellar feedback, Mon. Not. Roy. Astron. Soc. 428 (2013) 129 [arXiv:1208.0002] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    A. Di Cintio et al., The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores, Mon. Not. Roy. Astron. Soc. 437 (2014) 415 [arXiv:1306.0898] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Tollet et al., NIHAO — IV: core creation and destruction in dark matter density profiles across cosmic time, Mon. Not. Roy. Astron. Soc. 456 (2016) 3542 [arXiv:1507.03590] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    T.K. Chan et al., The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations, Mon. Not. Roy. Astron. Soc. 454 (2015) 2981 [arXiv:1507.02282] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    F. Marinacci, R. Pakmor and V. Springel, The formation of disc galaxies in high resolution moving-mesh cosmological simulations, Mon. Not. Roy. Astron. Soc. 437 (2014) 1750 [arXiv:1305.5360] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    AGORA collaboration, J.-H. Kim et al., The AGORA high-resolution galaxy simulations comparison project, Astrophys. J. Suppl. 210 (2013) 14 [arXiv:1308.2669] [INSPIRE].
  60. [60]
    J. Schaye et al., The EAGLE project: simulating the evolution and assembly of galaxies and their environments, Mon. Not. Roy. Astron. Soc. 446 (2015) 521 [arXiv:1407.7040] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    M. Schaller et al., Baryon effects on the internal structure of ΛCDM haloes in the EAGLE simulations, Mon. Not. Roy. Astron. Soc. 451 (2015) 1247 [arXiv:1409.8617] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Sawala et al., The APOSTLE simulations: solutions to the local group’s cosmic puzzles, Mon. Not. Roy. Astron. Soc. 457 (2016) 1931 [arXiv:1511.01098] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    D.G. Cerdeno, M. Fornasa, A.M. Green and M. Peiro, How to calculate dark matter direct detection exclusion limits that are consistent with gamma rays from annihilation in the milky way halo, Phys. Rev. D 94 (2016) 043516 [arXiv:1605.05185] [INSPIRE].ADSGoogle Scholar
  64. [64]
    A. Burkert and J. Silk, On the structure and nature of dark matter halos, in Dark matter in astrophysics and particle physics, H.V. Klapdor-Kleingrothaus and L. Baudis eds., (1999), pg. 375 [astro-ph/9904159] [INSPIRE].
  65. [65]
    IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilation in the galactic center with IceCube-79, Eur. Phys. J. C 75 (2015) 492 [arXiv:1505.07259] [INSPIRE].
  66. [66]
    S. Ando, Can dark matter annihilation dominate the extragalactic gamma-ray background?, Phys. Rev. Lett. 94 (2005) 171303 [astro-ph/0503006] [INSPIRE].
  67. [67]
    K.C.Y. Ng et al., Resolving small-scale dark matter structures using multisource indirect detection, Phys. Rev. D 89 (2014) 083001 [arXiv:1310.1915] [INSPIRE].ADSGoogle Scholar
  68. [68]
    S. Campbell, Gamma-ray probes of dark matter substructure, AIP Conf. Proc. 1604 (2014) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    C.A. Correa, J.S.B. Wyithe, J. Schaye and A.R. Duffy, The accretion history of dark matter haloes — III. A physical model for the concentration-mass relation, Mon. Not. Roy. Astron. Soc. 452 (2015) 1217 [arXiv:1502.00391] [INSPIRE].
  70. [70]
    R. Bartels and S. Ando, Boosting the annihilation boost: tidal effects on dark matter subhalos and consistent luminosity modeling, Phys. Rev. D 92 (2015) 123508 [arXiv:1507.08656] [INSPIRE].ADSGoogle Scholar
  71. [71]
    Á. Moliné, M.A. Sánchez-Conde, S. Palomares-Ruiz and F. Prada, Characterization of subhalo structural properties and implications for dark matter annihilation signals, Mon. Not. Roy. Astron. Soc. 466 (2017) 4974 [arXiv:1603.04057] [INSPIRE].ADSGoogle Scholar
  72. [72]
    S. Palomares-Ruiz, Model-independent bound on the dark matter lifetime, Phys. Lett. B 665 (2008) 50 [arXiv:0712.1937] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    India-based Neutrino Observatory (INO) webpage,
  74. [74]
    S.P. Behera, M.S. Bhatia, V.M. Datar and A.K. Mohanty, Simulation studies for electromagnetic design of INO ICAL magnet and its response to muons, arXiv:1406.3965 [INSPIRE].
  75. [75]
    A. Chatterjee et al., A simulations study of the muon response of the iron calorimeter detector at the India-based Neutrino Observatory, 2014 JINST 9 P07001 [arXiv:1405.7243] [INSPIRE].
  76. [76]
    M.M. Devi et al., Hadron energy response of the iron calorimeter detector at the India-based Neutrino Observatory, 2013 JINST 8 P11003 [arXiv:1304.5115] [INSPIRE].
  77. [77]
    L.S. Mohan et al., Simulation studies of hadron energy resolution as a function of iron plate thickness at INO-ICAL, 2014 JINST 9 T09003 [arXiv:1401.2779] [INSPIRE].
  78. [78]
    S.T. Petcov and T. Schwetz, Determining the neutrino mass hierarchy with atmospheric neutrinos, Nucl. Phys. B 740 (2006) 1 [hep-ph/0511277] [INSPIRE].
  79. [79]
    M. Blennow and T. Schwetz, Identifying the neutrino mass ordering with INO and NOνA, JHEP 08 (2012) 058 [Erratum ibid. 11 (2012) 098] [arXiv:1203.3388] [INSPIRE].
  80. [80]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Can atmospheric neutrino experiments provide the first hint of leptonic CP-violation?, Phys. Rev. D 89 (2014) 011301 [arXiv:1306.2500] [INSPIRE].ADSGoogle Scholar
  81. [81]
    M. Ghosh, P. Ghoshal, S. Goswami and S.K. Raut, Evidence for leptonic CP phase from NOνA, T2K and ICAL: a chronological progression, Nucl. Phys. B 884 (2014) 274 [arXiv:1401.7243] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S.U. Sankar and S. Shalgar, Mass hierarchy determination via future atmospheric neutrino detectors, Phys. Rev. D 76 (2007) 073012 [arXiv:0707.1723] [INSPIRE].ADSGoogle Scholar
  83. [83]
    J.A. Formaggio and G.P. Zeller, From eV to EeV: neutrino cross sections across energy scales, Rev. Mod. Phys. 84 (2012) 1307 [arXiv:1305.7513] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].ADSGoogle Scholar
  85. [85]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE].
  86. [86]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  87. [87]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  88. [88]
    A. Dziewonski and D. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  90. [90]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].ADSGoogle Scholar
  92. [92]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, Another possible way to determine the neutrino mass hierarchy, Phys. Rev. D 72 (2005) 013009 [hep-ph/0503283] [INSPIRE].
  93. [93]
    A. de Gouvêa, J. Jenkins and B. Kayser, Neutrino mass hierarchy, vacuum oscillations and vanishing |U e3|, Phys. Rev. D 71 (2005) 113009 [hep-ph/0503079] [INSPIRE].
  94. [94]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  95. [95]
    M. Honda, T. Kajita, K. Kasahara, S. Midorikawa and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D 75 (2007) 043006 [astro-ph/0611418] [INSPIRE].
  96. [96]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
  97. [97]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo and A.M. Rotunno, Solar neutrino oscillation parameters after first KamLAND results, Phys. Rev. D 67 (2003) 073002 [hep-ph/0212127] [INSPIRE].
  98. [98]
    M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].
  99. [99]
    S.P. Mikheev and A. Yu. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
  100. [100]
    S.P. Mikheev and A. Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  102. [102]
    L. Wolfenstein, Neutrino oscillations and stellar collapse, Phys. Rev. D 20 (1979) 2634 [INSPIRE].ADSGoogle Scholar
  103. [103]
    N. Dash, V.M. Datar and G. Majumder, Sensitivity for detection of decay of dark matter particle using ICAL at INO, Pramana 86 (2016) 927 [arXiv:1410.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    Super-Kamiokande collaboration, P. Mijakowski, Indirect searches for dark matter particles at Super-Kamiokande, J. Phys. Conf. Ser. 718 (2016) 042040 [INSPIRE].
  105. [105]
    IceCube collaboration, M.G. Aartsen et al., Search for neutrinos from dark matter self-annihilations in the center of the milky way with 3 years of IceCube/DeepCore, arXiv:1705.08103 [INSPIRE].
  106. [106]
    ANTARES collaboration, S. Adrian-Martinez et al., Search of dark matter annihilation in the galactic centre using the ANTARES neutrino telescope, JCAP 10 (2015) 068 [arXiv:1505.04866] [INSPIRE].
  107. [107]
    A. Albert et al., Results from the search for dark matter in the milky way with 9 years of data of the ANTARES neutrino telescope, Phys. Lett. B 769 (2017) 249 [arXiv:1612.04595] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    IceCube PINGU collaboration, M.G. Aartsen et al., Letter of intent: the Precision IceCube Next Generation Upgrade (PINGU), arXiv:1401.2046 [INSPIRE].
  109. [109]
    A.D. Avrorin et al., Dark matter constraints from an observation of dSphs and the LMC with the Baikal NT200, arXiv:1612.03836 [INSPIRE].
  110. [110]
    IceCube collaboration, R. Abbasi et al., Search for dark matter from the galactic halo with the IceCube neutrino telescope, Phys. Rev. D 84 (2011) 022004 [arXiv:1101.3349] [INSPIRE].
  111. [111]
    B. Dasgupta and R. Laha, Neutrinos in IceCube/KM3NeT as probes of dark matter substructures in galaxy clusters, Phys. Rev. D 86 (2012) 093001 [arXiv:1206.1322] [INSPIRE].ADSGoogle Scholar
  112. [112]
    IceCube collaboration, M.G. Aartsen et al., IceCube search for dark matter annihilation in nearby galaxies and galaxy clusters, Phys. Rev. D 88 (2013) 122001 [arXiv:1307.3473] [INSPIRE].
  113. [113]
    IceCube collaboration, M.G. Aartsen et al., Multipole analysis of IceCube data to search for dark matter accumulated in the galactic halo, Eur. Phys. J. C 75 (2015) 20 [arXiv:1406.6868] [INSPIRE].
  114. [114]
    Á. Moliné, A. Ibarra and S. Palomares-Ruiz, Future sensitivity of neutrino telescopes to dark matter annihilations from the cosmic diffuse neutrino signal, JCAP 06 (2015) 005 [arXiv:1412.4308] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    C. Rott, K. Kohri and S.C. Park, Superheavy dark matter and IceCube neutrino signals: bounds on decaying dark matter, Phys. Rev. D 92 (2015) 023529 [arXiv:1408.4575] [INSPIRE].ADSGoogle Scholar
  116. [116]
    C. El Aisati, M. Gustafsson and T. Hambye, New search for monochromatic neutrinos from dark matter decay, Phys. Rev. D 92 (2015) 123515 [arXiv:1506.02657] [INSPIRE].ADSGoogle Scholar
  117. [117]
    M. Chianese, G. Miele, S. Morisi and E. Vitagliano, Low energy IceCube data and a possible dark matter related excess, Phys. Lett. B 757 (2016) 251 [arXiv:1601.02934] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    S.M. Boucenna et al., Decaying leptophilic dark matter at IceCube, JCAP 12 (2015) 055 [arXiv:1507.01000] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    IceCube collaboration, M.G. Aartsen et al., All-flavour search for neutrinos from dark matter annihilations in the milky way with IceCube/DeepCore, Eur. Phys. J. C 76 (2016) 531 [arXiv:1606.00209] [INSPIRE].
  120. [120]
    J. Kumar and P. Sandick, Searching for dark matter annihilation to monoenergetic neutrinos with liquid scintillation detectors, JCAP 06 (2015) 035 [arXiv:1502.02091] [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    LENA collaboration, M. Wurm et al., The next-generation liquid-scintillator neutrino observatory LENA, Astropart. Phys. 35 (2012) 685 [arXiv:1104.5620] [INSPIRE].
  122. [122]
    M. Kachelriess and P.D. Serpico, Model-independent dark matter annihilation bound from the diffuse γ ray flux, Phys. Rev. D 76 (2007) 063516 [arXiv:0707.0209] [INSPIRE].ADSGoogle Scholar
  123. [123]
    N.F. Bell, J.B. Dent, T.D. Jacques and T.J. Weiler, Electroweak bremsstrahlung in dark matter annihilation, Phys. Rev. D 78 (2008) 083540 [arXiv:0805.3423] [INSPIRE].ADSGoogle Scholar
  124. [124]
    N.F. Bell, J.B. Dent, T.D. Jacques and T.J. Weiler, Dark matter annihilation signatures from electroweak bremsstrahlung, Phys. Rev. D 84 (2011) 103517 [arXiv:1101.3357] [INSPIRE].ADSGoogle Scholar
  125. [125]
    N.F. Bell, J.B. Dent, A.J. Galea, T.D. Jacques, L.M. Krauss and T.J. Weiler, W/Z bremsstrahlung as the dominant annihilation channel for dark matter, revisited, Phys. Lett. B 706 (2011) 6 [arXiv:1104.3823] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    M. Cirelli et al., PPPC 4 DM ID: a Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
  127. [127]
    K. Murase, R. Laha, S. Ando and M. Ahlers, Testing the dark matter scenario for PeV neutrinos observed in IceCube, Phys. Rev. Lett. 115 (2015) 071301 [arXiv:1503.04663] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    A. Esmaili and P.D. Serpico, Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints, JCAP 10 (2015) 014 [arXiv:1505.06486] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    D. Chowdhury, A.M. Iyer and R. Laha, Constraints on dark matter annihilation to fermions and a photon, arXiv:1601.06140 [INSPIRE].
  130. [130]
    F.S. Queiroz, C.E. Yaguna and C. Weniger, Gamma-ray limits on neutrino lines, JCAP 05 (2016) 050 [arXiv:1602.05966] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    A.D. Avrorin et al., Sensitivity of the Baikal-GVD neutrino telescope to neutrino emission toward the center of the galactic dark matter halo, JETP Lett. 101 (2015) 289 [arXiv:1412.3672] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    K. Abe et al., Letter of intent: the Hyper-Kamiokande experiment — detector design and physics potential, arXiv:1109.3262 [INSPIRE].
  133. [133]
    E.G. Speckhard, K.C.Y. Ng, J.F. Beacom and R. Laha, Dark matter velocity spectroscopy, Phys. Rev. Lett. 116 (2016) 031301 [arXiv:1507.04744] [INSPIRE].ADSCrossRefGoogle Scholar
  134. [134]
    D. Powell, R. Laha, K.C.Y. Ng and T. Abel, Doppler effect on indirect detection of dark matter using dark matter only simulations, Phys. Rev. D 95 (2017) 063012 [arXiv:1611.02714] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Amina Khatun
    • 1
    • 2
    Email author
  • Ranjan Laha
    • 3
    • 4
  • Sanjib Kumar Agarwalla
    • 1
    • 2
  1. 1.Institute of Physics, Sachivalaya Marg, Sainik School PostBhubaneswarIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  3. 3.Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Department of PhysicsStanford UniversityStanfordU.S.A.
  4. 4.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.

Personalised recommendations