Skip to main content

Holographic effective field theories

A preprint version of the article is available at arXiv.

Abstract

We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  2. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. I.R. Klebanov and A. Murugan, Gauge/Gravity duality and warped resolved conifold, JHEP 03 (2007) 042 [hep-th/0701064] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. D. Martelli and J. Sparks, Symmetry-breaking vacua and baryon condensates in AdS/CFT, Phys. Rev. D 79 (2009) 065009 [arXiv:0804.3999] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  7. L. Martucci, Warping the Kähler potential of F-theory/IIB flux compactifications, JHEP 03 (2015) 067 [arXiv:1411.2623] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. D. Martelli and J. Sparks, Baryonic branches and resolutions of Ricci-flat Kähler cones, JHEP 04 (2008) 067 [arXiv:0709.2894] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. M. Caibar, Minimal models of canonical 3-fold singularities and their Betti numbers, Int. Math. Res. Not. 2005 (2005) 1563.

    MathSciNet  Article  MATH  Google Scholar 

  10. G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP 05 (2000) 032 [hep-th/9912279] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge U.K. (2002).

    MATH  Google Scholar 

  12. R. Goto, Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities, arXiv:0906.5191.

  13. C. van Coevering, Regularity of asymptotically conical Ricci-flat Kähler metrics, arXiv:0912.3946.

  14. P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys. B 355 (1991) 455 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. T. Hausel, E. Hunsicker and R. Mazzeo, Hodge cohomology of gravitational instantons, Duke Math. J. 122 (2004) 485.

    MathSciNet  Article  MATH  Google Scholar 

  16. N. Berkovits, Quantum consistency of the superstring in AdS 5 × S 5 background, JHEP 03 (2005) 041 [hep-th/0411170] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. M. Bianchi, G. Inverso and L. Martucci, Brane instantons and fluxes in F-theory, JHEP 07 (2013) 037 [arXiv:1212.0024] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett. B 85 (1979) 333 [INSPIRE].

    ADS  Article  Google Scholar 

  19. O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP 05 (2005) 033 [hep-th/0502086] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP 11 (2000) 027 [hep-th/0010206] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. C.E. Beasley, BPS branes from baryons, JHEP 11 (2002) 015 [hep-th/0207125] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev. D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L p,q|r , JHEP 04 (2006) 033 [hep-th/0505206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting chiral operators in quiver gauge theories, JHEP 11 (2007) 092 [arXiv:0705.2771] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  28. D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The master space of N = 1 gauge theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP 11 (1997) 002 [hep-th/9710230] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819 [hep-th/9907189] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  31. P. Koerber and L. Martucci, From ten to four and back again: How to generalize the geometry, JHEP 08 (2007) 059 [arXiv:0707.1038] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  32. P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP 08 (2005) 099 [hep-th/0506154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP 11 (2005) 048 [hep-th/0507099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. Y.-K.E. Cheung and Z. Yin, Anomalies, branes and currents, Nucl. Phys. B 517 (1998) 69 [hep-th/9710206] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. N. Benishti, D. Rodriguez-Gomez and J. Sparks, Baryonic symmetries and M5 branes in the AdS 4 /CF T 3 correspondence, JHEP 07 (2010) 024 [arXiv:1004.2045] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103 [hep-th/9610234] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys. B 342 (1990) 246 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP 03 (2007) 090 [hep-th/0701063] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. A. Butti, D. Forcella and A. Zaffaroni, Counting BPS baryonic operators in CFTs with Sasaki-Einstein duals, JHEP 06 (2007) 069 [hep-th/0611229] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. D. Forcella, A. Hanany and A. Zaffaroni, Baryonic generating functions, JHEP 12 (2007) 022 [hep-th/0701236] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, U.S.A. (2000).

    MATH  Google Scholar 

  44. L.A. Pando Zayas and A.A. Tseytlin, 3-branes on resolved conifold, JHEP 11 (2000) 028 [hep-th/0010088] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. T.W. Grimm, The effective action of type-II Calabi-Yau orientifolds, Fortsch. Phys. 53 (2005) 1179 [hep-th/0507153] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Martucci.

Additional information

ArXiv ePrint: 1603.04470

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martucci, L., Zaffaroni, A. Holographic effective field theories. J. High Energ. Phys. 2016, 166 (2016). https://doi.org/10.1007/JHEP06(2016)166

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2016)166

Keywords

  • AdS-CFT Correspondence
  • Effective field theories
  • Conformal Field Models in String Theory