J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.
38 (1999) 1113 [hep-th/9711200] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys.
B 536 (1998) 199 [hep-th/9807080] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.
B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
I.R. Klebanov and A. Murugan, Gauge/Gravity duality and warped resolved conifold, JHEP
03 (2007) 042 [hep-th/0701064] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Martelli and J. Sparks, Symmetry-breaking vacua and baryon condensates in AdS/CFT, Phys. Rev.
D 79 (2009) 065009 [arXiv:0804.3999] [INSPIRE].
ADS
MathSciNet
Google Scholar
S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev.
D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
ADS
MathSciNet
Google Scholar
L. Martucci, Warping the Kähler potential of F-theory/IIB flux compactifications, JHEP
03 (2015) 067 [arXiv:1411.2623] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Martelli and J. Sparks, Baryonic branches and resolutions of Ricci-flat Kähler cones, JHEP
04 (2008) 067 [arXiv:0709.2894] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
M. Caibar, Minimal models of canonical 3-fold singularities and their Betti numbers, Int. Math. Res. Not.
2005 (2005) 1563.
MathSciNet
Article
MATH
Google Scholar
G.W. Moore and E. Witten, Selfduality, Ramond-Ramond fields and k-theory, JHEP
05 (2000) 032 [hep-th/9912279] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge U.K. (2002).
MATH
Google Scholar
R. Goto, Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singularities, arXiv:0906.5191.
C. van Coevering, Regularity of asymptotically conical Ricci-flat Kähler metrics, arXiv:0912.3946.
P. Candelas and X. de la Ossa, Moduli space of Calabi-Yau manifolds, Nucl. Phys.
B 355 (1991) 455 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T. Hausel, E. Hunsicker and R. Mazzeo, Hodge cohomology of gravitational instantons, Duke Math. J.
122 (2004) 485.
MathSciNet
Article
MATH
Google Scholar
N. Berkovits, Quantum consistency of the superstring in AdS
5 × S
5
background, JHEP
03 (2005) 041 [hep-th/0411170] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Bianchi, G. Inverso and L. Martucci, Brane instantons and fluxes in F-theory, JHEP
07 (2013) 037 [arXiv:1212.0024] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
W. Siegel, Gauge spinor superfield as a scalar multiplet, Phys. Lett.
B 85 (1979) 333 [INSPIRE].
ADS
Article
Google Scholar
O. Lunin and J.M. Maldacena, Deforming field theories with U(1) × U(1) global symmetry and their gravity duals, JHEP
05 (2005) 033 [hep-th/0502086] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP
01 (2006) 096 [hep-th/0504110] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP
10 (2007) 029 [hep-th/0511063] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Mikhailov, Giant gravitons from holomorphic surfaces, JHEP
11 (2000) 027 [hep-th/0010206] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
C.E. Beasley, BPS branes from baryons, JHEP
11 (2002) 015 [hep-th/0207125] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.S. Gubser and I.R. Klebanov, Baryons and domain walls in an N = 1 superconformal gauge theory, Phys. Rev.
D 58 (1998) 125025 [hep-th/9808075] [INSPIRE].
ADS
MathSciNet
Google Scholar
S. Benvenuti and M. Kruczenski, From Sasaki-Einstein spaces to quivers via BPS geodesics: L
p,q|r , JHEP
04 (2006) 033 [hep-th/0505206] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Butti, D. Forcella, A. Hanany, D. Vegh and A. Zaffaroni, Counting chiral operators in quiver gauge theories, JHEP
11 (2007) 092 [arXiv:0705.2771] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys.
12 (2008) 489 [hep-th/0511287] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The master space of N = 1 gauge theories, JHEP
08 (2008) 012 [arXiv:0801.1585] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
R. Minasian and G.W. Moore, K theory and Ramond-Ramond charge, JHEP
11 (1997) 002 [hep-th/9710230] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.S. Freed and E. Witten, Anomalies in string theory with D-branes, Asian J. Math.
3 (1999) 819 [hep-th/9907189] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
P. Koerber and L. Martucci, From ten to four and back again: How to generalize the geometry, JHEP
08 (2007) 059 [arXiv:0707.1038] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Koerber, Stable D-branes, calibrations and generalized Calabi-Yau geometry, JHEP
08 (2005) 099 [hep-th/0506154] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L. Martucci and P. Smyth, Supersymmetric D-branes and calibrations on general N = 1 backgrounds, JHEP
11 (2005) 048 [hep-th/0507099] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav.
14 (1997) 47 [hep-th/9605033] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y.-K.E. Cheung and Z. Yin, Anomalies, branes and currents, Nucl. Phys.
B 517 (1998) 69 [hep-th/9710206] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Benishti, D. Rodriguez-Gomez and J. Sparks, Baryonic symmetries and M5 branes in the AdS
4
/CF T
3
correspondence, JHEP
07 (2010) 024 [arXiv:1004.2045] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
E. Witten, Five-brane effective action in M-theory, J. Geom. Phys.
22 (1997) 103 [hep-th/9610234] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Candelas and X.C. de la Ossa, Comments on conifolds, Nucl. Phys.
B 342 (1990) 246 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP
11 (2007) 050 [hep-th/0608050] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Feng, A. Hanany and Y.-H. He, Counting gauge invariants: the plethystic program, JHEP
03 (2007) 090 [hep-th/0701063] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Butti, D. Forcella and A. Zaffaroni, Counting BPS baryonic operators in CFTs with Sasaki-Einstein duals, JHEP
06 (2007) 069 [hep-th/0611229] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Forcella, A. Hanany and A. Zaffaroni, Baryonic generating functions, JHEP
12 (2007) 022 [hep-th/0701236] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.A. Cox and S. Katz, Mirror symmetry and algebraic geometry, American Mathematical Society, U.S.A. (2000).
MATH
Google Scholar
L.A. Pando Zayas and A.A. Tseytlin, 3-branes on resolved conifold, JHEP
11 (2000) 028 [hep-th/0010088] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
T.W. Grimm, The effective action of type-II Calabi-Yau orientifolds, Fortsch. Phys.
53 (2005) 1179 [hep-th/0507153] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar