Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Gauge theories of partial compositeness: scenarios for Run-II of the LHC
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Underlying gauge-fermion models of compositeness

19 July 2021

Gabriele Ferretti

Gauge coupling unification without supersymmetry

24 April 2019

Jakob Schwichtenberg

Grand unification and the Planck scale: an SO(10) example of radiative symmetry breaking

10 August 2022

Aaron Held, Jan Kwapisz & Lohan Sartore

Semi-Abelian gauge theories, non-invertible symmetries, and string tensions beyond N-ality

25 March 2021

Mendel Nguyen, Yuya Tanizaki & Mithat Ünsal

Symmetry enhancement and duality walls in 5d gauge theories

25 June 2020

Ivan Garozzo, Noppadol Mekareeya, … Gabi Zafrir

Lattice-friendly gauge completion of a composite Higgs with top partners

27 February 2019

Helene Gertov, Ann E. Nelson, … Devin G. E. Walker

Discrete gauge symmetries and the weak gravity conjecture

23 May 2019

Nathaniel Craig, Isabel Garcia Garcia & Seth Koren

Lattice gauge theory for physics beyond the Standard Model

14 November 2019

USQCD Collaboration, Richard C. Brower, … Oliver Witzel

Light mediators in anomaly free U (1)X models. Part I. Theoretical framework

31 October 2019

F.C. Correia & Svjetlana Fajfer

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 June 2016

Gauge theories of partial compositeness: scenarios for Run-II of the LHC

  • Gabriele Ferretti1 

Journal of High Energy Physics volume 2016, Article number: 107 (2016) Cite this article

  • 322 Accesses

  • 74 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We continue our investigation of gauge theories in which the Higgs boson arises as a pseudo-Nambu-Goldstone boson (pNGB) and top-partners arise as bound states of three hyperfermions. All models have additional pNGBs in their spectrum that should be accessible at LHC. We analyze the patterns of symmetry breaking and present all relevant couplings of the pNGBs with the gauge fields. We discuss how vacuum misalignment and a mass for the pNGBs is generated by a loop-induced potential. Finally, we paint a very broad, qualitative, picture of the kind of experimental signatures these models give rise to, setting the stage for further analysis.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. P.W. Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. G.S. Guralnik, C.R. Hagen and T.W.B. Kibble, Global conservation laws and massless particles, Phys. Rev. Lett. 13 (1964) 585 [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (1967) 1264 [INSPIRE].

    Article  ADS  Google Scholar 

  5. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  6. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  7. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. I, Phys. Rev. 177 (1969) 2239 [INSPIRE].

  8. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. II, Phys. Rev. 177 (1969) 2247 [INSPIRE].

  9. R. Contino, The Higgs as a composite Nambu-Goldstone boson, in Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics, Boulder U.S.A., 1-26 Jun 2009 [arXiv:1005.4269] [INSPIRE].

  10. G. Panico and A. Wulzer, The composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913 (2016) 1 [arXiv:1506.01961] [INSPIRE].

    Article  MATH  Google Scholar 

  11. J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Ferretti, UV completions of partial compositeness: the case for a SU(4) gauge group, JHEP 06 (2014) 142 [arXiv:1404.7137] [INSPIRE].

    Article  ADS  Google Scholar 

  13. L. Vecchi, A “dangerous irrelevant” UV-completion of the composite Higgs, arXiv:1506.00623 [INSPIRE].

  14. G. Ferretti and D. Karateev, Fermionic UV completions of composite Higgs models, JHEP 03 (2014) 077 [arXiv:1312.5330] [INSPIRE].

    Article  ADS  Google Scholar 

  15. F. Caracciolo, A. Parolini and M. Serone, UV completions of composite Higgs models with partial compositeness, JHEP 02 (2013) 066 [arXiv:1211.7290] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Marzocca, A. Parolini and M. Serone, Supersymmetry with a pNGB Higgs and partial compositeness, JHEP 03 (2014) 099 [arXiv:1312.5664] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R. Nevzorov and A.W. Thomas, E 6 inspired composite Higgs model, Phys. Rev. D 92 (2015) 075007 [arXiv:1507.02101] [INSPIRE].

    ADS  Google Scholar 

  18. N. Bizot and M. Frigerio, Fermionic extensions of the standard model in light of the Higgs couplings, JHEP 01 (2016) 036 [arXiv:1508.01645] [INSPIRE].

    Article  ADS  Google Scholar 

  19. V. Sanz and J. Setford, Composite Higgses with seesaw EWSB, JHEP 12 (2015) 154 [arXiv:1508.06133] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunter’s guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].

    Article  Google Scholar 

  21. A. Thamm, R. Torre and A. Wulzer, Future tests of Higgs compositeness: direct vs indirect, JHEP 07 (2015) 100 [arXiv:1502.01701] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Barnard and M. White, Collider constraints on tuning in composite Higgs models, JHEP 10 (2015) 072 [arXiv:1507.02332] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Croon, B.M. Dillon, S.J. Huber and V. Sanz, Exploring holographic composite Higgs models, arXiv:1510.08482 [INSPIRE].

  24. M.J. Schlaffer, Boosted searches for new physics at the LHC, DESY-THESIS-2015-036 [INSPIRE].

  25. C. Englert, R. Rosenfeld, M. Spannowsky and A. Tonero, New physics and signal-background interference in associated pp → HZ production, Europhys. Lett. 114 (2016) 31001 [arXiv:1603.05304] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [INSPIRE].

  27. M.J. Strassler, Nonsupersymmetric theories with light scalar fields and large hierarchies, hep-th/0309122 [INSPIRE].

  28. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. V.S. Rychkov and A. Vichi, Universal constraints on conformal operator dimensions, Phys. Rev. D 80 (2009) 045006 [arXiv:0905.2211] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. C. Vafa and E. Witten, Restrictions on symmetry breaking in vector-like gauge theories, Nucl. Phys. B 234 (1984) 173 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. O. Matsedonskyi, On flavour and naturalness of composite Higgs models, JHEP 02 (2015) 154 [arXiv:1411.4638] [INSPIRE].

    Article  ADS  Google Scholar 

  32. G. Cacciapaglia et al., Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage, JHEP 06 (2015) 085 [arXiv:1501.03818] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. G. Panico and A. Pomarol, Flavor hierarchies from dynamical scales, arXiv:1603.06609 [INSPIRE].

  34. T. Ma and G. Cacciapaglia, Fundamental composite 2HDM: SU(N ) with 4 flavours, JHEP 03 (2016) 211 [arXiv:1508.07014] [INSPIRE].

    Article  ADS  Google Scholar 

  35. ATLAS collaboration, Search for resonances decaying to photon pairs in 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2015-081 (2015).

  36. CMS collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-15-004 (2015).

  37. A. Belyaev et al., Singlets in composite Higgs models in light of the LHC di-photon searches, arXiv:1512.07242 [INSPIRE].

  38. B. Bellazzini, R. Franceschini, F. Sala and J. Serra, Goldstones in diphotons, JHEP 04 (2016) 072 [arXiv:1512.05330] [INSPIRE].

    Article  ADS  Google Scholar 

  39. Z.-y. Duan, P.S. Rodrigues da Silva and F. Sannino, Enhanced global symmetry constraints on ϵ terms, Nucl. Phys. B 592 (2001) 371 [hep-ph/0001303] [INSPIRE].

  40. E. Katz, A.E. Nelson and D.G.E. Walker, The intermediate Higgs, JHEP 08 (2005) 074 [hep-ph/0504252] [INSPIRE].

  41. P. Lodone, Vector-like quarks in a “composite” Higgs model, JHEP 12 (2008) 029 [arXiv:0806.1472] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the minimal composite Higgs model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  43. G. Cacciapaglia and F. Sannino, Fundamental composite (Goldstone) Higgs dynamics, JHEP 04 (2014) 111 [arXiv:1402.0233] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Schmaltz, D. Stolarski and J. Thaler, The bestest little Higgs, JHEP 09 (2010) 018 [arXiv:1006.1356] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  45. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  46. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  47. N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].

  48. L. Vecchi, The natural composite Higgs, arXiv:1304.4579 [INSPIRE].

  49. J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  50. K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].

  51. P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin breaking in technicolor models, Nucl. Phys. B 173 (1980) 189 [INSPIRE].

    Article  ADS  Google Scholar 

  52. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  53. T. DeGrand, Y. Liu, E.T. Neil, Y. Shamir and B. Svetitsky, Spectroscopy of SU(4) gauge theory with two flavors of sextet fermions, Phys. Rev. D 91 (2015) 114502 [arXiv:1501.05665] [INSPIRE].

    ADS  Google Scholar 

  54. T. DeGrand, Y. Liu, E.T. Neil, Y. Shamir and B. Svetitsky, Spectroscopy of SU(4) lattice gauge theory with fermions in the two index anti-symmetric representation, PoS(LATTICE2014)275 [arXiv:1412.4851] [INSPIRE].

  55. T. DeGrand, Lattice tests of beyond standard model dynamics, Rev. Mod. Phys. 88 (2016) 015001 [arXiv:1510.05018] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D.K. Hong, S.D.H. Hsu and F. Sannino, Composite Higgs from higher representations, Phys. Lett. B 597 (2004) 89 [hep-ph/0406200] [INSPIRE].

  57. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for CERN LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [INSPIRE].

  58. D.D. Dietrich and F. Sannino, Conformal window of SU(N ) gauge theories with fermions in higher dimensional representations, Phys. Rev. D 75 (2007) 085018 [hep-ph/0611341] [INSPIRE].

  59. M. Golterman and Y. Shamir, Top quark induced effective potential in a composite Higgs model, Phys. Rev. D 91 (2015) 094506 [arXiv:1502.00390] [INSPIRE].

    ADS  Google Scholar 

  60. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

  61. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  62. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  63. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  65. Ö. Kaymakcalan, S. Rajeev and J. Schechter, Non-Abelian anomaly and vector-meson decays, Phys. Rev. D 30 (1984) 594 [INSPIRE].

    ADS  Google Scholar 

  66. H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463 [INSPIRE].

    Article  ADS  Google Scholar 

  67. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  69. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Kim, S.J. Lee and A. Parolini, WIMP dark matter in composite Higgs models and the dilaton portal, arXiv:1602.05590 [INSPIRE].

  71. A. Joseph and S.G. Rajeev, Topological dark matter in the little Higgs models, Phys. Rev. D 80 (2009) 074009 [arXiv:0905.2772] [INSPIRE].

    ADS  Google Scholar 

  72. L. Calibbi, G. Ferretti, D. Milstead, C. Petersson and R. Pöttgen, Baryon number violation in supersymmetry: \( n\;\hbox{-}\;\overline{n} \) oscillations as a probe beyond the LHC, JHEP 05 (2016) 144 [arXiv:1602.04821] [INSPIRE].

    Article  ADS  Google Scholar 

  73. B. Gripaios, Composite leptoquarks at the LHC, JHEP 02 (2010) 045 [arXiv:0910.1789] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  74. G. Cacciapaglia et al., Composite scalars at the LHC: the Higgs, the sextet and the octet, JHEP 11 (2015) 201 [arXiv:1507.02283] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. CMS collaboration, Search for top-quark partners with charge 5/3 in the same-sign dilepton final state, Phys. Rev. Lett. 112 (2014) 171801 [arXiv:1312.2391] [INSPIRE].

  76. T. DeGrand and Y. Shamir, One-loop anomalous dimension of top-partner hyperbaryons in a family of composite Higgs models, Phys. Rev. D 92 (2015) 075039 [arXiv:1508.02581] [INSPIRE].

    ADS  Google Scholar 

  77. C. Pica and F. Sannino, Anomalous dimensions of conformal baryons, arXiv:1604.02572 [INSPIRE].

  78. J.E. Kim, A composite invisible axion, Phys. Rev. D 31 (1985) 1733 [INSPIRE].

    ADS  Google Scholar 

  79. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  80. R.F. Dashen, Chiral SU(3) × SU(3) as a symmetry of the strong interactions, Phys. Rev. 183 (1969) 1245 [INSPIRE].

    Article  ADS  Google Scholar 

  81. B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP 02 (2016) 018 [arXiv:1512.03069] [INSPIRE].

    Article  Google Scholar 

  82. E949 collaboration, V.V. Anisimovsky et al., Improved measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 93 (2004) 031801 [hep-ex/0403036] [INSPIRE].

  83. D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, JCAP 02 (2012) 032 [arXiv:1110.2895] [INSPIRE].

    Article  ADS  Google Scholar 

  84. G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

  85. G. Veneziano, U(1) without instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  86. E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156 (1979) 269 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  87. K. Howe, S. Knapen and D.J. Robinson, Diphotons from an electroweak triplet-singlet, arXiv:1603.08932 [INSPIRE].

  88. G. Cacciapaglia and A. Parolini, Light ’t Hooft top partners, Phys. Rev. D 93 (2016) 071701 [arXiv:1511.05163] [INSPIRE].

    ADS  Google Scholar 

  89. G. ’t Hooft et al., in Proceedings of Recent developments in gauge theories, Cargèse France, 26 Aug-8 Sep 1979 [NATO Sci. Ser. B 59 (1980) 1] [INSPIRE].

  90. F. Sannino, Conformal windows of Sp(2N ) and SO(N ) gauge theories, Phys. Rev. D 79 (2009) 096007 [arXiv:0902.3494] [INSPIRE].

    ADS  Google Scholar 

  91. T.A. Ryttov and F. Sannino, Conformal house, Int. J. Mod. Phys. A 25 (2010) 4603 [arXiv:0906.0307] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. J.L. Cardy, Is there a c-theorem in four dimensions?, Phys. Lett. B 215 (1988) 749 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  93. H. Osborn, Derivation of a four-dimensional c-theorem for renormaliseable quantum field theories, Phys. Lett. B 222 (1989) 97 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  94. I. Jack and H. Osborn, Analogs of the c-theorem for four-dimensional renormalisable field theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Chalmers University of Technology, Fysikg arden 1, 41296, Göteborg, Sweden

    Gabriele Ferretti

Authors
  1. Gabriele Ferretti
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gabriele Ferretti.

Additional information

ArXiv ePrint: 1604.06467

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferretti, G. Gauge theories of partial compositeness: scenarios for Run-II of the LHC. J. High Energ. Phys. 2016, 107 (2016). https://doi.org/10.1007/JHEP06(2016)107

Download citation

  • Received: 28 April 2016

  • Revised: 27 May 2016

  • Accepted: 07 June 2016

  • Published: 20 June 2016

  • DOI: https://doi.org/10.1007/JHEP06(2016)107

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Technicolor and Composite Models
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.