Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Lepton asymmetry from mixing and oscillations
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Bounds on right-handed neutrino parameters from observable leptogenesis

02 December 2022

P. Hernández, J. López-Pavón, … S. Sandner

CP violation in mixing and oscillations for leptogenesis. Part II. The highly degenerate case

04 November 2021

J. Racker

The bearable compositeness of leptons

03 October 2018

Michele Frigerio, Marco Nardecchia, … Luca Vecchi

Lepton mixing and the charged-lepton mass ratios

26 March 2018

Darius Jurčiukonis & Luís Lavoura

The impact of different parameterizations on the interpretation of CP violation in neutrino oscillations

17 May 2021

Peter B. Denton & Rebekah Pestes

Leptonic sum rules from flavour models with modular symmetries

18 March 2021

J. Gehrlein & M. Spinrath

Leptogenesis from low energy CP violation

06 March 2019

K. Moffat, S. Pascoli, … J. Turner

Flavour observables and composite dynamics: leptons

04 August 2021

Florian Goertz

CP violation in mixing and oscillations in a toy model for leptogenesis with quasi-degenerate neutrinos

29 April 2021

J. Racker

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 10 June 2016

Lepton asymmetry from mixing and oscillations

  • A. Kartavtsev1,
  • P. Millington2,3 &
  • H. Vogel1 

Journal of High Energy Physics volume 2016, Article number: 66 (2016) Cite this article

  • 277 Accesses

  • 25 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show how the two physically-distinct sources of CP -asymmetry relevant to scenarios of leptogenesis: (i) resonant mixing and (ii) oscillations between different flavours can be unambiguously identified within the Kadanoff-Baym formalism. These contributions are isolated by analyzing the spectral structure of the non-equilibrium propagators without relying on the definition of particle number densities. The mixing source is associated with the usual mass shells, whereas the oscillation source is identified with a third intermediate shell. In addition, we identify terms lying on the oscillation shell that can be interpreted as the destructive interference between mixing and oscillation. We confirm that identical shell structure is obtained in both the Heisenberg- and interaction-picture realizations of the Kadanoff-Baym formalism. In so doing, we illustrate the self-consistency and complementarity of these two approaches. The interaction-picture approach in particular has the advantage that it may be used to analyze all forms of mass spectra from quasi-degenerate through to hierarchical.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  2. A. Pais and O. Piccioni, Note on the decay and absorption of the θ 0, Phys. Rev. 100 (1955) 1487 [INSPIRE].

    Article  ADS  Google Scholar 

  3. D. Boyanovsky and C.M. Ho, Nonequilibrium dynamics of mixing, oscillations and equilibration: a model study, Phys. Rev. D 75 (2007) 085004 [hep-ph/0610036] [INSPIRE].

  4. D. Boyanovsky and L. Lello, Time evolution of cascade decay, New J. Phys. 16 (2014) 063050 [arXiv:1403.6366] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D. Boyanovsky, Space-time evolution of heavy sterile neutrinos in cascade decays, Nucl. Phys. B 888 (2014) 248 [arXiv:1406.5739] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. D. Boyanovsky, Nearly degenerate heavy sterile neutrinos in cascade decay: mixing and oscillations, Phys. Rev. D 90 (2014) 105024 [arXiv:1409.4265] [INSPIRE].

    ADS  Google Scholar 

  7. B. Garbrecht and M. Herranen, Effective theory of resonant leptogenesis in the closed-time-path approach, Nucl. Phys. B 861 (2012) 17 [arXiv:1112.5954] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. B. Garbrecht, F. Gautier and J. Klaric, Strong washout approximation to resonant leptogenesis, JCAP 09 (2014) 033 [arXiv:1406.4190] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour covariant transport equations: an application to resonant leptogenesis, Nucl. Phys. B 886 (2014) 569 [arXiv:1404.1003] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Corrigendum to “Flavour covariant transport equations: an application to resonant leptogenesis”, Nucl. Phys. B 897 (2015) 749 [arXiv:1504.07640] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Kadanoff-Baym approach to flavour mixing and oscillations in resonant leptogenesis, Nucl. Phys. B 891 (2015) 128 [arXiv:1410.6434] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Blanchet and P. Di Bari, The minimal scenario of leptogenesis, New J. Phys. 14 (2012) 125012 [arXiv:1211.0512] [INSPIRE].

    Article  ADS  Google Scholar 

  14. V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].

  16. A. Pilaftsis, Heavy Majorana neutrinos and baryogenesis, Int. J. Mod. Phys. A 14 (1999) 1811 [hep-ph/9812256] [INSPIRE].

  17. J.R. Ellis, M. Raidal and T. Yanagida, Observable consequences of partially degenerate leptogenesis, Phys. Lett. B 546 (2002) 228 [hep-ph/0206300] [INSPIRE].

  18. T. Endoh, T. Morozumi and Z. Xiong, Primordial lepton family asymmetries in seesaw model, Prog. Theor. Phys. 111 (2004) 123 [hep-ph/0308276] [INSPIRE].

  19. A. Pilaftsis, Resonant τ leptogenesis with observable lepton number violation, Phys. Rev. Lett. 95 (2005) 081602 [hep-ph/0408103] [INSPIRE].

  20. A. Pilaftsis and T.E.J. Underwood, Electroweak-scale resonant leptogenesis, Phys. Rev. D 72 (2005) 113001 [hep-ph/0506107] [INSPIRE].

  21. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

  22. O. Vives, Flavor dependence of CP asymmetries and thermal leptogenesis with strong right-handed neutrino mass hierarchy, Phys. Rev. D 73 (2006) 073006 [hep-ph/0512160] [INSPIRE].

  23. F.F. Deppisch and A. Pilaftsis, Lepton flavour violation and θ 13 in minimal resonant leptogenesis, Phys. Rev. D 83 (2011) 076007 [arXiv:1012.1834] [INSPIRE].

    ADS  Google Scholar 

  24. S. Blanchet, P. Di Bari, D.A. Jones and L. Marzola, Leptogenesis with heavy neutrino flavours: from density matrix to Boltzmann equations, JCAP 01 (2013) 041 [arXiv:1112.4528] [INSPIRE].

    Article  ADS  Google Scholar 

  25. R. Barbieri, P. Creminelli, A. Strumia and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61 [hep-ph/9911315] [INSPIRE].

  26. A. Abada, S. Davidson, F.-X. Josse-Michaux, M. Losada and A. Riotto, Flavour issues in leptogenesis, JCAP 04 (2006) 004 [hep-ph/0601083] [INSPIRE].

  27. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [INSPIRE].

  28. A. Abada et al., Flavour matters in leptogenesis, JHEP 09 (2006) 010 [hep-ph/0605281] [INSPIRE].

  29. S. Blanchet and P. Di Bari, Flavour effects on leptogenesis predictions, JCAP 03 (2007) 018 [hep-ph/0607330] [INSPIRE].

  30. S. Blanchet, P. Di Bari and G.G. Raffelt, Quantum Zeno effect and the impact of flavour in leptogenesis, JCAP 03 (2007) 012 [hep-ph/0611337] [INSPIRE].

  31. S. Pascoli, S.T. Petcov and A. Riotto, Leptogenesis and low energy CP-violation in neutrino physics, Nucl. Phys. B 774 (2007) 1 [hep-ph/0611338] [INSPIRE].

  32. G.C. Branco, A.J. Buras, S. Jäger, S. Uhlig and A. Weiler, Another look at minimal lepton flavour violation, leptogenesis and the ratio M ν /ΛLFV, JHEP 09 (2007) 004 [hep-ph/0609067] [INSPIRE].

  33. A. De Simone and A. Riotto, On the impact of flavour oscillations in leptogenesis, JCAP 02 (2007) 005 [hep-ph/0611357] [INSPIRE].

  34. A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes, Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].

  35. A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303 [hep-ph/0309342] [INSPIRE].

  36. M. Flanz, E.A. Paschos and U. Sarkar, Baryogenesis from a lepton asymmetric universe, Phys. Lett. B 345 (1995) 248 [Erratum ibid. B 382 (1996) 447] [hep-ph/9411366] [INSPIRE].

  37. L. Covi and E. Roulet, Baryogenesis from mixed particle decays, Phys. Lett. B 399 (1997) 113 [hep-ph/9611425] [INSPIRE].

  38. L. Covi, E. Roulet and F. Vissani, CP violating decays in leptogenesis scenarios, Phys. Lett. B 384 (1996) 169 [hep-ph/9605319] [INSPIRE].

  39. W. Buchmüller and M. Plümacher, CP asymmetry in Majorana neutrino decays, Phys. Lett. B 431 (1998) 354 [hep-ph/9710460] [INSPIRE].

  40. P.S. Bhupal Dev, P. Millington, A. Pilaftsis and D. Teresi, Flavour effects in resonant leptogenesis from semi-classical and Kadanoff-Baym approaches, J. Phys. Conf. Ser. 631 (2015) 012087 [arXiv:1502.07987] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. E.W. Kolb and S. Wolfram, Baryon number generation in the early universe, Nucl. Phys. B 172 (1980) 224 [Erratum ibid. B 195 (1982) 542] [INSPIRE].

  42. M.A. Luty, Baryogenesis via leptogenesis, Phys. Rev. D 45 (1992) 455 [INSPIRE].

    ADS  Google Scholar 

  43. G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406 (1993) 423 [INSPIRE].

    Article  ADS  Google Scholar 

  44. E.K. Akhmedov, V.A. Rubakov and A.Y. Smirnov, Baryogenesis via neutrino oscillations, Phys. Rev. Lett. 81 (1998) 1359 [hep-ph/9803255] [INSPIRE].

  45. M. Shaposhnikov, The νMSM, leptonic asymmetries and properties of singlet fermions, JHEP 08 (2008) 008 [arXiv:0804.4542] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. J.-S. Gagnon and M. Shaposhnikov, Baryon asymmetry of the universe without Boltzmann or Kadanoff-Baym equations, Phys. Rev. D 83 (2011) 065021 [arXiv:1012.1126] [INSPIRE].

    ADS  Google Scholar 

  47. T. Asaka, S. Eijima and H. Ishida, Kinetic equations for baryogenesis via sterile neutrino oscillation, JCAP 02 (2012) 021 [arXiv:1112.5565] [INSPIRE].

    Article  ADS  Google Scholar 

  48. L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right-handed neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].

    ADS  Google Scholar 

  49. B. Shuve and I. Yavin, Baryogenesis through neutrino oscillations: a unified perspective, Phys. Rev. D 89 (2014) 075014 [arXiv:1401.2459] [INSPIRE].

    ADS  Google Scholar 

  50. W. Buchmüller and S. Fredenhagen, Quantum mechanics of baryogenesis, Phys. Lett. B 483 (2000) 217 [hep-ph/0004145] [INSPIRE].

  51. T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order ℏ and electroweak baryogenesis: part I, Annals Phys. 314 (2004) 208 [hep-ph/0312110] [INSPIRE].

  52. T. Prokopec, M.G. Schmidt and S. Weinstock, Transport equations for chiral fermions to order ℏ and electroweak baryogenesis: part II, Annals Phys. 314 (2004) 267 [hep-ph/0406140] [INSPIRE].

  53. A. De Simone and A. Riotto, Quantum Boltzmann equations and leptogenesis, JCAP 08 (2007) 002 [hep-ph/0703175] [INSPIRE].

  54. A. De Simone and A. Riotto, On resonant leptogenesis, JCAP 08 (2007) 013 [arXiv:0705.2183] [INSPIRE].

    Article  Google Scholar 

  55. V. Cirigliano, A. De Simone, G. Isidori, I. Masina and A. Riotto, Quantum resonant leptogenesis and minimal lepton flavour violation, JCAP 01 (2008) 004 [arXiv:0711.0778] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Nonequilibrium dynamics of scalar fields in a thermal bath, Annals Phys. 324 (2009) 1234 [arXiv:0812.1934] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter, Phys. Rev. D 80 (2009) 125027 [arXiv:0909.1559] [INSPIRE].

    ADS  Google Scholar 

  58. M. Garny, A. Hohenegger, A. Kartavtsev and M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter, Phys. Rev. D 81 (2010) 085027 [arXiv:0911.4122] [INSPIRE].

    ADS  Google Scholar 

  59. V. Cirigliano, C. Lee, M.J. Ramsey-Musolf and S. Tulin, Flavored quantum Boltzmann equations, Phys. Rev. D 81 (2010) 103503 [arXiv:0912.3523] [INSPIRE].

    ADS  Google Scholar 

  60. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Leptogenesis from quantum interference in a thermal bath, Phys. Rev. Lett. 104 (2010) 121102 [arXiv:1001.3856] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Garny, A. Hohenegger and A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis, Phys. Rev. D 81 (2010) 085028 [arXiv:1002.0331] [INSPIRE].

    ADS  Google Scholar 

  62. M. Beneke, B. Garbrecht, M. Herranen and P. Schwaller, Finite number density corrections to leptogenesis, Nucl. Phys. B 838 (2010) 1 [arXiv:1002.1326] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. M. Beneke, B. Garbrecht, C. Fidler, M. Herranen and P. Schwaller, Flavoured leptogenesis in the CTP formalism, Nucl. Phys. B 843 (2011) 177 [arXiv:1007.4783] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. B. Garbrecht, Leptogenesis: the other cuts, Nucl. Phys. B 847 (2011) 350 [arXiv:1011.3122] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. A. Anisimov, W. Buchmüller, M. Drewes and S. Mendizabal, Quantum leptogenesis I, Annals Phys. 326 (2011) 1998 [Erratum ibid. 338 (2011) 376] [arXiv:1012.5821] [INSPIRE].

  66. M. Garny, A. Kartavtsev and A. Hohenegger, Leptogenesis from first principles in the resonant regime, Annals Phys. 328 (2013) 26 [arXiv:1112.6428] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. M. Drewes and B. Garbrecht, Leptogenesis from a GeV seesaw without mass degeneracy, JHEP 03 (2013) 096 [arXiv:1206.5537] [INSPIRE].

    Article  ADS  Google Scholar 

  68. B. Garbrecht, Baryogenesis from mixing of lepton doublets, Nucl. Phys. B 868 (2013) 557 [arXiv:1210.0553] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev and D. Mitrouskas, Systematic approach to thermal leptogenesis, Phys. Rev. D 87 (2013) 085009 [arXiv:1211.2140] [INSPIRE].

    ADS  Google Scholar 

  70. M. Drewes, The phenomenology of right handed neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

    Article  ADS  Google Scholar 

  71. B. Garbrecht and M.J. Ramsey-Musolf, Cuts, cancellations and the closed time path: the soft leptogenesis example, Nucl. Phys. B 882 (2014) 145 [arXiv:1307.0524] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. A. Hohenegger and A. Kartavtsev, Leptogenesis in crossing and runaway regimes, JHEP 07 (2014) 130 [arXiv:1404.5309] [INSPIRE].

    Article  ADS  Google Scholar 

  73. S. Iso, K. Shimada and M. Yamanaka, Kadanoff-Baym approach to the thermal resonant leptogenesis, JHEP 04 (2014) 062 [arXiv:1312.7680] [INSPIRE].

    Article  ADS  Google Scholar 

  74. S. Iso and K. Shimada, Coherent flavour oscillation and CP-violating parameter in thermal resonant leptogenesis, JHEP 08 (2014) 043 [arXiv:1404.4816] [INSPIRE].

    Article  ADS  Google Scholar 

  75. G. Baym and L.P. Kadanoff, Conservation laws and correlation functions, Phys. Rev. 124 (1961) 287 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. L.P. Kadanoff and G. Baym, Quantum statistical mechanics, Benjamin, New York U.S.A. (1962).

  77. J.-P. Blaizot and E. Iancu, The quark gluon plasma: collective dynamics and hard thermal loops, Phys. Rept. 359 (2002) 355 [hep-ph/0101103] [INSPIRE].

  78. J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739 (2004) 3 [hep-ph/0409233] [INSPIRE].

  79. J.S. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961) 407 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47 (1964) 1515 [INSPIRE].

    MathSciNet  Google Scholar 

  81. R.D. Jordan, Effective field equations for expectation values, Phys. Rev. D 33 (1986) 444 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  82. E. Calzetta and B.L. Hu, Nonequilibrium quantum fields: closed time path effective action, Wigner function and Boltzmann equation, Phys. Rev. D 37 (1988) 2878 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  83. E. Calzetta and B.L. Hu, Closed time path functional formalism in curved space-time: application to cosmological back reaction problems, Phys. Rev. D 35 (1987) 495 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  84. P. Millington and A. Pilaftsis, Perturbative nonequilibrium thermal field theory, Phys. Rev. D 88 (2013) 085009 [arXiv:1211.3152] [INSPIRE].

    ADS  MATH  Google Scholar 

  85. P. Millington and A. Pilaftsis, Perturbative non-equilibrium thermal field theory to all orders in gradient expansion, Phys. Lett. B 724 (2013) 56 [arXiv:1304.7249] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. H.A. Weldon, Thermalization of boson propagators in finite-temperature field theory, Phys. Rev. D 45 (1992) 352 [INSPIRE].

    ADS  Google Scholar 

  87. T. Altherr and D. Seibert, Problems of perturbation series in nonequilibrium quantum field theories, Phys. Lett. B 333 (1994) 149 [hep-ph/9405396] [INSPIRE].

  88. T. Altherr, Resummation of perturbation series in nonequilibrium scalar field theory, Phys. Lett. B 341 (1995) 325 [hep-ph/9407249] [INSPIRE].

  89. P.F. Bedaque, Thermalization and pinch singularities in non-equilibrium quantum field theory, Phys. Lett. B 344 (1995) 23 [hep-ph/9410415] [INSPIRE].

  90. I. Dadić, Two mechanisms for elimination of pinch singularities in out of equilibrium thermal field theories, Phys. Rev. D 59 (1999) 125012 [hep-ph/9801399] [INSPIRE].

  91. C. Greiner and S. Leupold, Interpretation and resolution of pinch singularities in non-equilibrium quantum field theory, Eur. Phys. J. C 8 (1999) 517 [hep-ph/9804239] [INSPIRE].

  92. B. Garbrecht and M. Garny, Finite width in out-of-equilibrium propagators and kinetic theory, Annals Phys. 327 (2012) 914 [arXiv:1108.3688] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  93. M. Garny, A. Hohenegger and A. Kartavtsev, Quantum corrections to leptogenesis from the gradient expansion, arXiv:1005.5385 [INSPIRE].

  94. A. Hohenegger and A. Kartavtsev, Basis invariant measure of CP-violation and renormalization, Nucl. Phys. B 899 (2015) 476 [arXiv:1309.1385] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. A.D. Sakharov, Violation of CP invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].

    Google Scholar 

  96. C. Fidler, M. Herranen, K. Kainulainen and P.M. Rahkila, Flavoured quantum Boltzmann equations from cQPA, JHEP 02 (2012) 065 [arXiv:1108.2309] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  97. R.F. Hoskins and J.S. Pinto, Theories of generalised functions: distributions, ultradistributions and other generalised functions, Woodhead Publishing, Cambridge U.K. (2005), pp. 48-50.

  98. N. Nakanishi, A theory of clothed unstable particles, Prog. Theor. Phys. 19 (1958) 607.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. T. Petrosky, I. Prigogine and S. Tasaki, Quantum theory of non-integrable systems, Physica A 173 (1991) 175.

    Article  ADS  MathSciNet  Google Scholar 

  100. M. Le Bellac, Thermal field theory, Cambridge University Press, Cambridge U.K. (2000).

  101. M.J.G. Veltman, Unitarity and causality in a renormalizable field theory with unstable particles, Physica 29 (1963) 186 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  102. M. Plümacher, Baryon asymmetry, neutrino mixing and supersymmetric SO(10) unification, Nucl. Phys. B 530 (1998) 207 [hep-ph/9704231] [INSPIRE].

  103. A. Hohenegger, A. Kartavtsev and M. Lindner, Deriving Boltzmann equations from Kadanoff-Baym equations in curved space-time, Phys. Rev. D 78 (2008) 085027 [arXiv:0807.4551] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  104. J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10 (1974) 2428 [INSPIRE].

    ADS  MATH  Google Scholar 

  105. R.E. Norton and J.M. Cornwall, On the formalism of relativistic many body theory, Annals Phys. 91 (1975) 106 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  106. F. Hahn-Woernle, M. Plümacher and Y.Y.Y. Wong, Full Boltzmann equations for leptogenesis including scattering, JCAP 08 (2009) 028 [arXiv:0907.0205] [INSPIRE].

    Article  ADS  Google Scholar 

  107. A. Kartavtsev and D. Besak, Baryogenesis via leptogenesis in an inhomogeneous universe, Phys. Rev. D 78 (2008) 083001 [arXiv:0803.2729] [INSPIRE].

    ADS  Google Scholar 

  108. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Annals Phys. 315 (2005) 305 [hep-ph/0401240] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Max-Planck-Institut für Physik, Föhringer Ring 6, 80805, München, Germany

    A. Kartavtsev & H. Vogel

  2. Physik Department T70, Technische Universität München, James-Franck-Straße, 85748, Garching, Germany

    P. Millington

  3. School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

    P. Millington

Authors
  1. A. Kartavtsev
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. P. Millington
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. H. Vogel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Kartavtsev.

Additional information

ArXiv ePrint: 1601.03086

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kartavtsev, A., Millington, P. & Vogel, H. Lepton asymmetry from mixing and oscillations. J. High Energ. Phys. 2016, 66 (2016). https://doi.org/10.1007/JHEP06(2016)066

Download citation

  • Received: 14 January 2016

  • Revised: 29 March 2016

  • Accepted: 11 April 2016

  • Published: 10 June 2016

  • DOI: https://doi.org/10.1007/JHEP06(2016)066

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Thermal Field Theory
  • Effective field theories
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.