Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Lorentz violation naturalness revisited

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 08 June 2016
  • volume 2016, Article number: 49 (2016)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Lorentz violation naturalness revisited
Download PDF
  • Alessio Belenchia1,2,
  • Andrea Gambassi1,2 &
  • Stefano Liberati1,2 
  • 305 Accesses

  • 8 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We revisit here the naturalness problem of Lorentz invariance violations on a simple toy model of a scalar field coupled to a fermion field via a Yukawa interaction. We first review some well-known results concerning the low-energy percolation of Lorentz violation from high energies, presenting some details of the analysis not explicitly discussed in the literature and discussing some previously unnoticed subtleties. We then show how a separation between the scale of validity of the effective field theory and that one of Lorentz invariance violations can hinder this low-energy percolation. While such protection mechanism was previously considered in the literature, we provide here a simple illustration of how it works and of its general features. Finally, we consider a case in which dissipation is present, showing that the dissipative behaviour does not percolate generically to lower mass dimension operators albeit dispersion does. Moreover, we show that a scale separation can protect from unsuppressed low-energy percolation also in this case.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S. Liberati, Tests of Lorentz invariance: a 2013 update, Class. Quant. Grav. 30 (2013) 133001 [arXiv:1304.5795] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Mattingly, Modern tests of Lorentz invariance, Living Rev. Rel. 8 (2005) 5 [gr-qc/0502097] [INSPIRE].

  3. G. Amelino-Camelia, Quantum-spacetime phenomenology, Living Rev. Rel. 16 (2013) 5 [arXiv:0806.0339] [INSPIRE].

    Google Scholar 

  4. M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. R. Gambini and J. Pullin, Nonstandard optics from quantum space-time, Phys. Rev. D 59 (1999) 124021 [gr-qc/9809038] [INSPIRE].

  6. L.F. Urrutia, Corrections to flat-space particle dynamics arising from space granularity, Lect. Notes Phys. 702 (2006) 299 [hep-ph/0506260] [INSPIRE].

  7. N.E. Mavromatos, Lorentz invariance violation from string theory, PoS(QG-Ph)027 [arXiv:0708.2250] [INSPIRE].

  8. P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  9. T. Jacobson, Einstein-aether gravity: a status report, PoS (QG-Ph) 020 [arXiv:0801.1547] [INSPIRE].

  10. G. Amelino-Camelia, Testable scenario for relativity with minimum length, Phys. Lett. B 510 (2001) 255 [hep-th/0012238] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  11. G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman and L. Smolin, The principle of relative locality, Phys. Rev. D 84 (2011) 084010 [arXiv:1101.0931] [INSPIRE].

    ADS  MATH  Google Scholar 

  12. C. Rovelli and S. Speziale, Lorentz covariance of loop quantum gravity, Phys. Rev. D 83 (2011) 104029 [arXiv:1012.1739] [INSPIRE].

    ADS  Google Scholar 

  13. L. Bombelli, J. Lee, D. Meyer and R. Sorkin, Space-time as a causal set, Phys. Rev. Lett. 59 (1987) 521 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. L. Bombelli, J. Henson and R.D. Sorkin, Discreteness without symmetry breaking: a theorem, Mod. Phys. Lett. A 24 (2009) 2579 [gr-qc/0605006] [INSPIRE].

  15. G. Amelino-Camelia, Relativity in space-times with short distance structure governed by an observer independent (Planckian) length scale, Int. J. Mod. Phys. D 11 (2002) 35 [gr-qc/0012051] [INSPIRE].

  16. J. Collins, A. Perez, D. Sudarsky, L. Urrutia and H. Vucetich, Lorentz invariance and quantum gravity: an additional fine-tuning problem?, Phys. Rev. Lett. 93 (2004) 191301 [gr-qc/0403053] [INSPIRE].

  17. R. Iengo, J.G. Russo and M. Serone, Renormalization group in Lifshitz-type theories, JHEP 11 (2009) 020 [arXiv:0906.3477] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Gambini, S. Rastgoo and J. Pullin, Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?, Class. Quant. Grav. 28 (2011) 155005 [arXiv:1106.1417] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J. Polchinski, Comment on ‘Small Lorentz violations in quantum gravity: do they lead to unacceptably large effects?’, Class. Quant. Grav. 29 (2012) 088001 [arXiv:1106.6346] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. N. Afshordi, Why is high energy physics Lorentz invariant?, arXiv:1511.07879 [INSPIRE].

  21. S. Groot Nibbelink and M. Pospelov, Lorentz violation in supersymmetric field theories, Phys. Rev. Lett. 94 (2005) 081601 [hep-ph/0404271] [INSPIRE].

  22. P.A. Bolokhov, S. Groot Nibbelink and M. Pospelov, Lorentz violating supersymmetric quantum electrodynamics, Phys. Rev. D 72 (2005) 015013 [hep-ph/0505029] [INSPIRE].

  23. L. Sindoni, The Higgs mechanism in Finsler spacetimes, Phys. Rev. D 77 (2008) 124009 [arXiv:0712.3518] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. M. Pospelov and Y. Shang, On Lorentz violation in Hořava-Lifshitz type theories, Phys. Rev. D 85 (2012) 105001 [arXiv:1010.5249] [INSPIRE].

    ADS  Google Scholar 

  25. H.B. Nielsen and M. Ninomiya, β-function in a non-covariant Yang-Mills theory, Nucl. Phys. B 141 (1978) 153 [INSPIRE].

  26. H.B. Nielsen and I. Picek, The Rédei-like model and testing Lorentz invariance, Phys. Lett. B 114 (1982) 141 [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Bednik, O. Pujolàs and S. Sibiryakov, Emergent Lorentz invariance from strong dynamics: holographic examples, JHEP 11 (2013) 064 [arXiv:1305.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Collins, A. Perez and D. Sudarsky, Lorentz invariance violation and its role in quantum gravity phenomenology, in Approaches to quantum gravity: towards a new understanding of space and time, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2006) [hep-th/0603002] [INSPIRE].

  29. R. Parentani, Constructing QFT’s wherein Lorentz invariance is broken by dissipative effects in the UV, PoS(QG-Ph)031 [arXiv:0709.3943] [INSPIRE].

  30. A. Perez and D. Sudarsky, Comments on challenges for quantum gravity, Phys. Rev. Lett. 91 (2003) 179101 [gr-qc/0306113] [INSPIRE].

  31. J. Alfaro, Quantum gravity and Lorentz invariance deformation in the standard model, Phys. Rev. Lett. 94 (2005) 221302 [hep-th/0412295] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. R.C. Myers and M. Pospelov, Experimental challenges for quantum gravity, in Proceedings of the 3rd International Symposium on Quantum Theory and Symmetries (QTS-3), Cincinnati U.S.A. (2003), pp. 732-744 [gr-qc/0402028] [INSPIRE].

  33. R.P. Woodard, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia 10 (2015) 32243 [arXiv:1506.02210] [INSPIRE].

    Article  Google Scholar 

  34. D.A. Eliezer and R.P. Woodard, The problem of nonlocality in string theory, Nucl. Phys. B 325 (1989) 389 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Kleppe and R.P. Woodard, Nonlocal Yang-Mills, Nucl. Phys. B 388 (1992) 81 [hep-th/9203016] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S.D. Joglekar, Causality violation in non-local QFT, in Workshop Series on Theoretical High Energy Physics, Roorkee India (2005) [hep-th/0601006] [INSPIRE].

  37. L. Modesto and L. Rachwal, Universally finite gravitational and gauge theories, Nucl. Phys. B 900 (2015) 147 [arXiv:1503.00261] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. E.T. Tomboulis, Nonlocal and quasilocal field theories, Phys. Rev. D 92 (2015) 125037 [arXiv:1507.00981] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. S.B. Giddings, Locality in quantum gravity and string theory, Phys. Rev. D 74 (2006) 106006 [hep-th/0604072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  40. G. Calcagni and L. Modesto, Nonlocality in string theory, J. Phys. A 47 (2014) 355402 [arXiv:1310.4957] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  41. F. Markopoulou and L. Smolin, Disordered locality in loop quantum gravity states, Class. Quant. Grav. 24 (2007) 3813 [gr-qc/0702044] [INSPIRE].

  42. R.D. Sorkin, Does locality fail at intermediate length-scales, in Approaches to quantum gravity: towards a new understanding of space and time, D. Oriti ed., Cambridge University Press, Cambridge U.K. (2006) [gr-qc/0703099] [INSPIRE].

  43. A. Belenchia, D.M.T. Benincasa and S. Liberati, Nonlocal scalar quantum field theory from causal sets, JHEP 03 (2015) 036 [arXiv:1411.6513] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. R. Gambini and J. Pullin, Emergence of stringlike physics from Lorentz invariance in loop quantum gravity, Int. J. Mod. Phys. D 23 (2014) 1442023 [arXiv:1406.2610] [INSPIRE].

    Article  ADS  Google Scholar 

  45. F. Dowker, J. Henson and R.D. Sorkin, Quantum gravity phenomenology, Lorentz invariance and discreteness, Mod. Phys. Lett. A 19 (2004) 1829 [gr-qc/0311055] [INSPIRE].

  46. A. Jain and S.D. Joglekar, Causality violation in nonlocal quantum field theory, Int. J. Mod. Phys. A 19 (2004) 3409 [hep-th/0307208] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Saini and S.D. Joglekar, Bound on nonlocal scale from g − 2 of muon in a nonlocal W-S model, Z. Phys. C 76 (1997) 343 [hep-ph/9701405] [INSPIRE].

  48. D. Evens, J.W. Moffat, G. Kleppe and R.P. Woodard, Nonlocal regularizations of gauge theories, Phys. Rev. D 43 (1991) 499 [INSPIRE].

    ADS  Google Scholar 

  49. D. Sudarsky and J.A. Caicedo, On the proposals of Lorentz invariance violation resulting from a quantum-gravitational granularity of space-time, J. Phys. Conf. Ser. 24 (2005) 69 [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Liberati and L. Maccione, Astrophysical constraints on Planck scale dissipative phenomena, Phys. Rev. Lett. 112 (2014) 151301 [arXiv:1309.7296] [INSPIRE].

    Article  ADS  Google Scholar 

  51. E. Borriello, S. Chakraborty, A. Mirizzi and P.D. Serpico, Stringent constraint on neutrino Lorentz-invariance violation from the two IceCube PeV neutrinos, Phys. Rev. D 87 (2013) 116009 [arXiv:1303.5843] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. SISSA — International School for Advanced Studies, via Bonomea 265, 34136, Trieste, Italy

    Alessio Belenchia, Andrea Gambassi & Stefano Liberati

  2. INFN, Sezione di Trieste, via Valerio 2, 34127, Trieste, Italy

    Alessio Belenchia, Andrea Gambassi & Stefano Liberati

Authors
  1. Alessio Belenchia
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Andrea Gambassi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stefano Liberati
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alessio Belenchia.

Additional information

ArXiv ePrint: 1601.06700

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenchia, A., Gambassi, A. & Liberati, S. Lorentz violation naturalness revisited. J. High Energ. Phys. 2016, 49 (2016). https://doi.org/10.1007/JHEP06(2016)049

Download citation

  • Received: 01 February 2016

  • Accepted: 13 May 2016

  • Published: 08 June 2016

  • DOI: https://doi.org/10.1007/JHEP06(2016)049

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Space-Time Symmetries
  • Effective field theories

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature