Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Logarithmic singularities and maximally supersymmetric amplitudes
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Pentagon Wilson loop with Lagrangian insertion at two loops in N $$ \mathcal{N} $$ = 4 super Yang-Mills theory

06 July 2022

Dmitry Chicherin & Johannes Henn

Symmetry properties of Wilson loops with a Lagrangian insertion

11 July 2022

Dmitry Chicherin & Johannes M. Henn

The cosmic Galois group and extended Steinmann relations for planar N $$ \mathcal{N} $$ = 4 SYM amplitudes

09 September 2019

Simon Caron-Huot, Lance J. Dixon, … Georgios Papathanasiou

Six-Gluon amplitudes in planar N $$ \mathcal{N} $$ = 4 super-Yang-Mills theory at six and seven loops

05 August 2019

Simon Caron-Huot, Lance J. Dixon, … Georgios Papathanasiou

All-loop-orders relation between Regge limits of N $$ \mathcal{N} $$ = 4 SYM and N $$ \mathcal{N} $$ = 8 supergravity four-point amplitudes

04 February 2021

Stephen G. Naculich

The two-loop five-point amplitude in N $$ \mathcal{N} $$ = 8 supergravity

21 March 2019

Samuel Abreu, Lance J. Dixon, … Mao Zeng

The S matrix of 6D super Yang-Mills and maximal supergravity from rational maps

20 September 2018

Freddy Cachazo, Alfredo Guevara, … Congkao Wen

Integrated correlators in N $$ \mathcal{N} $$ = 4 super Yang-Mills and periods

20 May 2022

Congkao Wen & Shun-Qing Zhang

The two-loop five-particle amplitude in N $$ \mathcal{N} $$ = 8 supergravity

20 March 2019

Dmitry Chicherin, Thomas Gehrmann, … Simone Zoia

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 30 June 2015

Logarithmic singularities and maximally supersymmetric amplitudes

  • Zvi Bern1,
  • Enrico Herrmann2,
  • Sean Litsey1,
  • James Stankowicz1 &
  • …
  • Jaroslav Trnka2 

Journal of High Energy Physics volume 2015, Article number: 202 (2015) Cite this article

  • 479 Accesses

  • 48 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The dual formulation of planar \( \mathcal{N}=4 \) super-Yang-Mills scattering amplitudes makes manifest that the integrand has only logarithmic singularities and no poles at infinity. Recently, Arkani-Hamed, Bourjaily, Cachazo and Trnka conjectured the same singularity properties hold to all loop orders in the nonplanar sector as well. Here we conjecture that to all loop orders these constraints give us the key integrand level analytic information contained in dual conformal symmetry. We also conjecture that to all loop orders, while \( \mathcal{N}=8 \) supergravity has poles at infinity, at least at four points it has only logarithmic singularities at finite locations. We provide nontrivial evidence for these conjectures. For the three-loop four-point \( \mathcal{N}=4 \) super-Yang-Mills amplitude, we explicitly construct a complete basis of diagram integrands that has only logarithmic singularities and no poles at infinity. We then express the complete amplitude in terms of the basis diagrams, with the coefficients determined by unitarity. We also give examples at three loops showing how to make the logarithmic singularity properties manifest via d log forms. We give additional evidence at four and five loops supporting the nonplanar logarithmic singularity conjecture. Furthermore, we present a variety of examples illustrating that these constraints are more restrictive than dual conformal symmetry. Our investigations show that the singularity structures of planar and nonplanar integrands in \( \mathcal{N}=4 \) super-Yang-Mills are strikingly similar. While it is not clear how to extend either dual conformal symmetry or a dual formulation to the nonplanar sector, these results suggest that related concepts might exist and await discovery. Finally, we describe the singularity structure of \( \mathcal{N}=8 \) supergravity at three loops and beyond.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual spinor model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].

    Article  ADS  Google Scholar 

  3. Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 [hep-th/0504194] [INSPIRE].

  5. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J.M. Drummond, Tree-level amplitudes and dual superconformal symmetry, J. Phys. A 44 (2011) 454010 [arXiv:1107.4544] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. H. Elvang and Y.-t. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

  8. J.M. Henn and J.C. Plefka, Scattering amplitudes in gauge theories, Lecture Notes in Physics volume 883, Springer, Germany (2014).

  9. L.J. Dixon, J.M. Drummond and J.M. Henn, Analytic result for the two-loop six-point NMHV amplitude in N = 4 super Yang-Mills theory, JHEP 01 (2012) 024 [arXiv:1111.1704] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping six-gluon scattering in planar N = 4 super-Yang-Mills theory, PoS(LL2014)077 [arXiv:1407.4724] [INSPIRE].

  11. L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP 06 (2014) 116 [arXiv:1402.3300] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP 10 (2014) 065 [arXiv:1408.1505] [INSPIRE].

    Article  ADS  Google Scholar 

  13. Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R. Roiban, M. Spradlin and A. Volovich, A googly amplitude from the B model in twistor space, JHEP 04 (2004) 012 [hep-th/0402016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP 01 (2011) 041 [arXiv:1008.2958] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J.M. Drummond, J. Henn, V.A. Smirnov and E. Sokatchev, Magic identities for conformal four-point integrals, JHEP 01 (2007) 064 [hep-th/0607160] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Dual superconformal symmetry of scattering amplitudes in N = 4 super-Yang-Mills theory, Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP 05 (2013) 135 [arXiv:0905.1473] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. L.J. Mason and D. Skinner, The complete planar S-matrix of N = 4 SYM as a Wilson loop in twistor space, JHEP 12 (2010) 018 [arXiv:1009.2225] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S. Caron-Huot, Notes on the scattering amplitude/Wilson loop duality, JHEP 07 (2011) 058 [arXiv:1010.1167] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. B. Eden, G.P. Korchemsky and E. Sokatchev, From correlation functions to scattering amplitudes, JHEP 12 (2011) 002 [arXiv:1007.3246] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. B. Eden, G.P. Korchemsky and E. Sokatchev, More on the duality correlators/amplitudes, Phys. Lett. B 709 (2012) 247 [arXiv:1009.2488] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Arkani-Hamed et al., Scattering amplitudes and the positive grassmannian, arXiv:1212.5605 [INSPIRE].

  29. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, A duality for the S matrix, JHEP 03 (2010) 020 [arXiv:0907.5418] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N. Arkani-Hamed, F. Cachazo and C. Cheung, The grassmannian origin of dual superconformal invariance, JHEP 03 (2010) 036 [arXiv:0909.0483] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. L.J. Mason and D. Skinner, Dual superconformal invariance, momentum twistors and grassmannians, JHEP 11 (2009) 045 [arXiv:0909.0250] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Unification of residues and grassmannian dualities, JHEP 01 (2011) 049 [arXiv:0912.4912] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. N. Arkani-Hamed, J. Bourjaily, F. Cachazo and J. Trnka, Local spacetime physics from the Grassmannian, JHEP 01 (2011) 108 [arXiv:0912.3249] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Y.-T. Huang and C. Wen, ABJM amplitudes and the positive orthogonal grassmannian, JHEP 02 (2014) 104 [arXiv:1309.3252] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. Y.-t. Huang, C. Wen and D. Xie, The positive orthogonal grassmannian and loop amplitudes of ABJM, J. Phys. A 47 (2014) 474008 [arXiv:1402.1479] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  36. J. Kim and S. Lee, Positroid stratification of orthogonal grassmannian and ABJM amplitudes, JHEP 09 (2014) 085 [arXiv:1402.1119] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. H. Elvang et al., Grassmannians for scattering amplitudes in 4d \( \mathcal{N}=4 \) SYM and 3d ABJM, JHEP 12 (2014) 181 [arXiv:1410.0621] [INSPIRE].

    Article  ADS  Google Scholar 

  38. B. Chen et al., Nonplanar on-shell diagrams and leading singularities of scattering amplitudes, arXiv:1411.3889 [INSPIRE].

  39. N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP 1410 (2014) 30 [arXiv:1312.2007] [INSPIRE].

    Article  ADS  Google Scholar 

  40. N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP 12 (2014) 182 [arXiv:1312.7878] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP 03 (2015) 128 [arXiv:1408.3410] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  42. T. Lam, Amplituhedron cells and Stanley symmetric functions, arXiv:1408.5531 [INSPIRE].

  43. Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP 02 (2015) 065 [arXiv:1408.2459] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998) 70.

    Article  MathSciNet  MATH  Google Scholar 

  45. A. Postnikov, Total positivity, grassmannians and networks, math/0609764 [INSPIRE].

  46. A. Postnikov, D. Speyer and L. Williams, Matching polytopes, toric geometry, and the non-negative part of the Grassmannian, arXiv:0706.2501.

  47. L.K. Williams, Enumeration of totally positive Grassmann cells, math/0307271.

  48. A.B. Goncharov and R. Kenyon, Dimers and cluster integrable systems, arXiv:1107.5588 [INSPIRE].

  49. A. Knutson, T. Lam and D. Speyer, Positroid varieties: juggling and geometry, arXiv:1111.3660.

  50. J.M. Drummond, J.M. Henn and J. Plefka, Yangian symmetry of scattering amplitudes in N =4 super Yang-Mills theory, JHEP 05 (2009) 046[arXiv:0902.2987][INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. A.V. Kotikov and L.N. Lipatov, On the highest transcendentality in N = 4 SUSY, Nucl. Phys. B 769 (2007) 217 [hep-th/0611204] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. B. Eden and M. Staudacher, Integrability and transcendentality, J. Stat. Mech. 0611 (2006) P11014 [hep-th/0603157] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  53. N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Google Scholar 

  54. A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude revisited, JHEP 01 (2014) 169 [arXiv:1307.1443] [INSPIRE].

    Article  ADS  Google Scholar 

  55. A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  56. J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP 01 (2014) 091 [arXiv:1305.1617] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Golden, M.F. Paulos, M. Spradlin and A. Volovich, Cluster Polylogarithms for Scattering Amplitudes, J. Phys. A 47 (2014) 474005 [arXiv:1401.6446] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  58. J. Golden and M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, JHEP 02 (2015) 002 [arXiv:1411.3289] [INSPIRE].

    Article  ADS  Google Scholar 

  59. N. Beisert and M. Staudacher, The N = 4 SYM integrable super spin chain, Nucl. Phys. B 670 (2003) 439 [hep-th/0307042] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N =4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].

    Article  ADS  Google Scholar 

  61. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux tube S-matrix II. Extracting and matching data, JHEP 01 (2014) 008 [arXiv:1306.2058] [INSPIRE].

    Article  ADS  Google Scholar 

  62. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix III. The two-particle contributions, JHEP 08 (2014) 085 [arXiv:1402.3307] [INSPIRE].

    Article  ADS  Google Scholar 

  63. B. Basso, A. Sever and P. Vieira, Collinear limit of scattering amplitudes at strong coupling, Phys. Rev. Lett. 113 (2014) 261604 [arXiv:1405.6350] [INSPIRE].

    Article  ADS  Google Scholar 

  64. B. Basso, A. Sever and P. Vieira, Space-time S-matrix and flux-tube S-matrix IV. Gluons and fusion, JHEP 09 (2014) 149 [arXiv:1407.1736] [INSPIRE].

    Article  ADS  Google Scholar 

  65. L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Harmonic R-matrices for scattering amplitudes and spectral regularization, Phys. Rev. Lett. 110 (2013) 121602 [arXiv:1212.0850] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. L. Ferro, T. Lukowski, C. Meneghelli, J. Plefka and M. Staudacher, Spectral parameters for scattering amplitudes in N = 4 super Yang-Mills theory, JHEP 01 (2014) 094 [arXiv:1308.3494] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. N. Beisert, J. Broedel and M. Rosso, On yangian-invariant regularization of deformed on-shell diagrams in \( \mathcal{N}=4 \) super-Yang-Mills theory, J. Phys. A 47 (2014) 365402 [arXiv:1401.7274] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  68. J. Broedel, M. de Leeuw and M. Rosso, Deformed one-loop amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills theory, JHEP 11 (2014) 091 [arXiv:1406.4024] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. L. Ferro, T. Lukowski and M. Staudacher, \( \mathcal{N}=4 \) scattering amplitudes and the deformed Grassmannian, Nucl. Phys. B 889 (2014) 192 [arXiv:1407.6736] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. T. Bargheer, Y.-t. Huang, F. Loebbert and M. Yamazaki, Integrable amplitude deformations for N = 4 super Yang-Mills and ABJM theory, Phys. Rev. D 91 (2015) 026004 [arXiv:1407.4449] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  71. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A. Postnikov and J. Trnka, On-shell structures of MHV amplitudes beyond the planar limit, to appear.

  72. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  73. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model, Phys. Lett. B 595 (2004) 521 [hep-th/0404092] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point amplitudes in N =8 Supergravity and Wilson loops,Nucl. Phys. B 807 (2009) 290[arXiv:0805.2763] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity structure of maximally supersymmetric scattering amplitudes, Phys. Rev. Lett. 113 (2014) 261603 [arXiv:1410.0354] [INSPIRE].

    Article  ADS  Google Scholar 

  79. Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

    Article  ADS  Google Scholar 

  80. J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. J.L. Bourjaily, A. DiRe, A. Shaikh, M. Spradlin and A. Volovich, The soft-collinear bootstrap: N = 4 Yang-Mills amplitudes at six and seven loops, JHEP 03 (2012) 032 [arXiv:1112.6432] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. Z. Bern et al., Three-loop superfiniteness of N = 8 supergravity, Phys. Rev. Lett. 98 (2007) 161303 [hep-th/0702112] [INSPIRE].

    Article  ADS  Google Scholar 

  83. J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  84. J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

    Article  ADS  Google Scholar 

  86. J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    Article  ADS  Google Scholar 

  88. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Manifest ultraviolet behavior for the three-loop four-point amplitude of N = 8 supergravity, Phys. Rev. D 78 (2008) 105019 [arXiv:0808.4112] [INSPIRE].

    ADS  Google Scholar 

  89. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].

    ADS  Google Scholar 

  90. G. Passarino and M.J.G. Veltman, One loop corrections for e + e − annihilation into μ + μ − in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  91. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Z. Bern, J.J. Carrasco, T. Dennen, Y.-t. Huang and H. Ita, Generalized unitarity and six-dimensional helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].

    ADS  Google Scholar 

  93. F. Cachazo, Sharpening the leading singularity, arXiv:0803.1988 [INSPIRE].

  94. G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  95. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Z. Bern and G. Chalmers, Factorization in one loop gauge theory, Nucl. Phys. B 447 (1995) 465 [hep-ph/9503236] [INSPIRE].

    Article  ADS  Google Scholar 

  97. C. Anastasiou, Z. Bern, L.J. Dixon and D.A. Kosower, Planar amplitudes in maximally supersymmetric Yang-Mills theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  98. Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  99. N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of triangles in maximal supergravity amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  100. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. Z. Bern, J.J.M. Carrasco, H. Johansson and R. Roiban, The five-loop four-point amplitude of N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 109 (2012) 241602 [arXiv:1207.6666] [INSPIRE].

    Article  ADS  Google Scholar 

  102. Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory, Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  103. F. Cachazo and D. Skinner, On the structure of scattering amplitudes in N = 4 super Yang-Mills and N = 8 supergravity, arXiv:0801.4574 [INSPIRE].

  104. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The complete four-loop four-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. D 82 (2010) 125040 [arXiv:1008.3327] [INSPIRE].

    ADS  Google Scholar 

  105. J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  106. B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl. Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  107. Z. Bern et al., D = 5 maximally supersymmetric Yang-Mills theory diverges at six loops, Phys. Rev. D 87 (2013) 025018 [arXiv:1210.7709] [INSPIRE].

    ADS  Google Scholar 

  108. N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to N = 4 super-Yang-Mills, J. Phys. A 44 (2011) 454004 [arXiv:1103.3298] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  110. H. Elvang, D.Z. Freedman and M. Kiermaier, Recursion relations, generating functions and unitarity sums in N = 4 SYM theory, JHEP 04 (2009) 009 [arXiv:0808.1720] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  111. Z. Bern, J.J.M. Carrasco, H. Ita, H. Johansson and R. Roiban, On the structure of supersymmetric sums in multi-loop unitarity cuts, Phys. Rev. D 80 (2009) 065029 [arXiv:0903.5348] [INSPIRE].

    ADS  Google Scholar 

  112. Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Absence of three-loop four-point divergences in N = 4 supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].

    Article  ADS  Google Scholar 

  113. Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N}=5 \) supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].

    ADS  Google Scholar 

  114. F.V. Tkachov, A theorem on analytical calculability of four loop renormalization group functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  115. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics and Astronomy, UCLA, Los Angeles, CA, 90095, USA

    Zvi Bern, Sean Litsey & James Stankowicz

  2. Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125, USA

    Enrico Herrmann & Jaroslav Trnka

Authors
  1. Zvi Bern
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Enrico Herrmann
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Sean Litsey
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. James Stankowicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Jaroslav Trnka
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Zvi Bern.

Additional information

ArXiv ePrint: 1412.8584

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bern, Z., Herrmann, E., Litsey, S. et al. Logarithmic singularities and maximally supersymmetric amplitudes. J. High Energ. Phys. 2015, 202 (2015). https://doi.org/10.1007/JHEP06(2015)202

Download citation

  • Received: 14 January 2015

  • Accepted: 26 April 2015

  • Published: 30 June 2015

  • DOI: https://doi.org/10.1007/JHEP06(2015)202

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Scattering Amplitudes
  • Extended Supersymmetry
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.