Elliptic flow of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV

Abstract

The elliptic flow coefficient (v 2) of identified particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}}=2.76 \) TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Δη| > 0.9 between the identified hadron under study and the reference particles. The v 2 is reported for π ±, K±, K 0S , \( \mathrm{p}+\overline{\mathrm{p}} \), ϕ, \( \Lambda +\overline{\Lambda} \), \( {\Xi}^{-}+{\overline{\Xi}}^{+} \) and \( {\Omega}^{-}+{\overline{\Omega}}^{+} \) in several collision centralities. In the low transverse momentum (p T) region, p T < 3 GeV/c, v 2(p T) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for π ± and the combined K± and K 0S results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v 2(p T) for \( \mathrm{p}+\overline{\mathrm{p}} \), ϕ, \( \Lambda +\overline{\Lambda} \) and \( {\Xi}^{-}+{\overline{\Xi}}^{+} \). For transverse momentum values larger than about 3 GeV/c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of ±20% for p T > 3 GeV/c.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H. Satz, Color deconfinement in nuclear collisions, Rept. Prog. Phys. 63 (2000) 1511 [hep-ph/0007069] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    S.A. Bass, M. Gyulassy, H. Stoecker and W. Greiner, Signatures of quark gluon plasma formation in high-energy heavy ion collisions: a critical review, J. Phys. G 25 (1999) R1 [hep-ph/9810281] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    E.V. Shuryak, Theory and phenomenology of the QCD vacuum, Phys. Rept. 115 (1984) 151 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. Cleymans, R.V. Gavai and E. Suhonen, Quarks and Gluons at High Temperatures and Densities, Phys. Rept. 130 (1986) 217 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Borsányi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  6. [6]

    T. Bhattacharya, M.I. Buchoff, N.H. Christ, H.-T. Ding, R. Gupta et al., QCD Phase Transition with Chiral Quarks and Physical Quark Masses, Phys. Rev. Lett. 113 (2014) 082001 [arXiv:1402.5175] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    BRAHMS collaboration, I. Arsene et al., Quark gluon plasma and color glass condensate at RHIC? The Perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [INSPIRE].

  8. [8]

    PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].

  9. [9]

    PHOBOS collaboration, B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [INSPIRE].

  10. [10]

    STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaborations critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].

  11. [11]

    ALICE collaboration, Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 105 (2010) 252301 [arXiv:1011.3916] [INSPIRE].

  12. [12]

    ALICE collaboration, Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 106 (2011) 032301 [arXiv:1012.1657] [INSPIRE].

  13. [13]

    CMS collaboration, Dependence on pseudorapidity and centrality of charged hadron production in Pb-Pb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV, JHEP 08 (2011) 141 [arXiv:1107.4800] [INSPIRE].

  14. [14]

    ALICE collaboration, Two-pion Bose-Einstein correlations in central Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 696 (2011) 328 [arXiv:1012.4035] [INSPIRE].

  15. [15]

    ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

  16. [16]

    ATLAS collaboration, Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with the ATLAS detector, Phys. Lett. B 707 (2012) 330 [arXiv:1108.6018] [INSPIRE].

  17. [17]

    ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{s_{NN}}=2.76 \) TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012)014907 [arXiv:1203.3087] [INSPIRE].

  18. [18]

    CMS collaboration, Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Eur. Phys. J. C 72 (2012) 2012 [arXiv:1201.3158] [INSPIRE].

  19. [19]

    CMS collaboration, Measurement of the elliptic anisotropy of charged particles produced in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 87 (2013) 014902 [arXiv:1204.1409] [INSPIRE].

  20. [20]

    ALICE collaboration, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 107 (2011) 032301 [arXiv:1105.3865] [INSPIRE].

  21. [21]

    ATLAS collaboration, Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with the ATLAS detector at the LHC, JHEP 11 (2013) 183 [arXiv:1305.2942] [INSPIRE].

  22. [22]

    CMS collaboration, Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 89 (2014) 044906 [arXiv:1310.8651] [INSPIRE].

  23. [23]

    ALICE collaboration, Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb-Pb Collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [INSPIRE].

  24. [24]

    ATLAS collaboration, Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at \( \sqrt{s_{NN}}=2.77 \) TeV with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [INSPIRE].

  25. [25]

    CMS collaboration, Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 84 (2011) 024906 [arXiv:1102.1957] [INSPIRE].

  26. [26]

    S.A. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

    Google Scholar 

  27. [27]

    A.M. Poskanzer and S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671 [nucl-ex/9805001] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    R.S. Bhalerao and J.-Y. Ollitrault, Eccentricity fluctuations and elliptic flow at RHIC, Phys. Lett. B 641 (2006) 260 [nucl-th/0607009] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    B. Alver, B.B. Back, M.D. Baker, M. Ballintijn, D.S. Barton et al., Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions, Phys. Rev. C 77 (2008) 014906 [arXiv:0711.3724] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    J.-Y. Ollitrault, A.M. Poskanzer and S.A. Voloshin, Effect of flow fluctuations and nonflow on elliptic flow methods, Phys. Rev. C 80 (2009) 014904 [arXiv:0904.2315] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905 [Erratum ibid. C 82 (2010) 039903] [arXiv:1003.0194] [INSPIRE].

  32. [32]

    Z. Qiu and U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911 [arXiv:1104.0650] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen and S.A. Voloshin, Radial and elliptic flow at RHIC: Further predictions, Phys. Lett. B 503 (2001) 58 [hep-ph/0101136] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    D. Teaney, J. Lauret and E.V. Shuryak, Flow at the SPS and RHIC as a quark gluon plasma signature, Phys. Rev. Lett. 86 (2001) 4783 [nucl-th/0011058] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    S.A. Voloshin, Transverse radial expansion and directed flow, Phys. Rev. C 55 (1997) 1630 [nucl-th/9611038] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    C. Shen, U. Heinz, P. Huovinen and H. Song, Radial and elliptic flow in Pb+Pb collisions at the Large Hadron Collider from viscous hydrodynamic, Phys. Rev. C 84 (2011) 044903 [arXiv:1105.3226] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    E877 collaboration, J. Barrette et al., Proton and pion production relative to the reaction plane in Au + Au collisions at AGS energies, Phys. Rev. C 56 (1997) 3254 [nucl-ex/9707002] [INSPIRE].

  39. [39]

    E877 collaboration, J. Barrette et al., Directed flow of light nuclei in Au + Au collisions at AGS energies, Phys. Rev. C 59 (1999) 884 [nucl-ex/9805006] [INSPIRE].

  40. [40]

    NA49 collaboration, H. Appelshauser et al., Directed and elliptic flow in 158 GeV/nucleon Pb + Pb collisions, Phys. Rev. Lett. 80 (1998) 4136 [nucl-ex/9711001] [INSPIRE].

  41. [41]

    NA49 collaboration, C. Alt et al., Directed and elliptic flow of charged pions and protons in Pb + Pb collisions at 40 A and 158 A GeV, Phys. Rev. C 68 (2003) 034903 [nucl-ex/0303001] [INSPIRE].

  42. [42]

    STAR collaboration, J. Adams et al., Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au + Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 92 (2004) 052302 [nucl-ex/0306007] [INSPIRE].

  43. [43]

    STAR collaboration, B.I. Abelev et al., Mass, quark-number and \( \sqrt{s_{NN}} \) dependence of the second and fourth flow harmonics in ultra-relativistic nucleus-nucleus collisions, Phys. Rev. C 75 (2007) 054906 [nucl-ex/0701010] [INSPIRE].

  44. [44]

    STAR collaboration, J. Adams et al., Azimuthal anisotropy in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 72 (2005) 014904 [nucl-ex/0409033] [INSPIRE].

  45. [45]

    PHENIX collaboration, S.S. Adler et al., Elliptic flow of identified hadrons in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013] [INSPIRE].

  46. [46]

    PHENIX collaboration, S. Afanasiev et al., Elliptic flow for phi mesons and (anti)deuterons in Au + Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 99 (2007) 052301 [nucl-ex/0703024] [INSPIRE].

  47. [47]

    PHENIX collaboration, A. Adare et al., Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. Lett. 98 (2007) 162301 [nucl-ex/0608033] [INSPIRE].

  48. [48]

    PHENIX collaboration, A. Adare et al., Deviation from quark-number scaling of the anisotropy parameter v 2 of pions, kaons and protons in Au+Au collisions at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 85 (2012) 064914 [arXiv:1203.2644] [INSPIRE].

  49. [49]

    T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    S.F. Biagi, M. Bourquin, A.J. Britten, R.M. Brown, H. Burckhart et al., Measurements of the Total Cross-sections of Σ and Ξ on Protons and Deuterons Between 74 GeV/c and 137 GeV/c, Nucl. Phys. B 186 (1981) 1 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    S.A. Bass, A. Dumitru, M. Bleicher, L. Bravina, E. Zabrodin et al., Hadronic freezeout following a first order hadronization phase transition in ultrarelativistic heavy ion collisions, Phys. Rev. C 60 (1999) 021902 [nucl-th/9902062] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    A. Dumitru, S.A. Bass, M. Bleicher, H. Stoecker and W. Greiner, Direct emission of multiple strange baryons in ultrarelativistic heavy ion collisions from the phase boundary, Phys. Lett. B 460 (1999) 411 [nucl-th/9901046] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    S.A. Bass and A. Dumitru, Dynamics of hot bulk QCD matter: from the quark gluon plasma to hadronic freezeout, Phys. Rev. C 61 (2000) 064909 [nucl-th/0001033] [INSPIRE].

    ADS  Google Scholar 

  54. [54]

    A. Shor, φ-meson production as a probe of the quark-gluon plasma, Phys. Rev. Lett. 54 (1985) 1122 [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    S.A. Voloshin, Anisotropic flow, Nucl. Phys. A 715 (2003) 379 [nucl-ex/0210014] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    D. Molnar and S.A. Voloshin, Elliptic flow at large transverse momenta from quark coalescence, Phys. Rev. Lett. 91 (2003) 092301 [nucl-th/0302014] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    V. Greco, C.M. Ko and P. Levai, Parton coalescence at RHIC, Phys. Rev. C 68 (2003) 034904 [nucl-th/0305024] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    R.J. Fries, B. Müller, C. Nonaka and S.A. Bass, Hadron production in heavy ion collisions: Fragmentation and recombination from a dense parton phase, Phys. Rev. C 68 (2003) 044902 [nucl-th/0306027] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    R.C. Hwa and C.B. Yang, Recombination of shower partons in fragmentation processes, Phys. Rev. C 70 (2004) 024904 [hep-ph/0312271] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].

  61. [61]

    ALICE collaboration, ALICE: Physics performance report, volume I, J. Phys. G 30 (2004) 1517 [INSPIRE].

  62. [62]

    ALICE collaboration, ALICE: Physics performance report, volume II, J. Phys. G 32 (2006) 1295 [INSPIRE].

  63. [63]

    ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  64. [64]

    STAR collaboration, C. Adler et al., Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{NN}}=130 \) GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].

  65. [65]

    S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective Phenomena in Non-Central Nuclear Collisions, in Relativistic Heavy Ion Physics, Landolt-Börnstein series, Springer-Verlag, Berlin Germany (2010), pg. 293.

  66. [66]

    ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  67. [67]

    J. Alme, Y. Andres, H. Appelshauser, S. Bablok, N. Bialas et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    ALICE collaboration, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  69. [69]

    A. Akindinov, A. Alici, A. Agostinelli, P. Antonioli, S. Arcelli et al., Performance of the ALICE Time-Of-Flight detector at the LHC, Eur. Phys. J. Plus 128 (2013) 44 [INSPIRE].

    Article  Google Scholar 

  70. [70]

    ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  71. [71]

    ALICE collaboration, Centrality dependence of π, K, p production in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 88 (2013) 044910 [arXiv:1303.0737] [INSPIRE].

  72. [72]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  73. [73]

    ALICE collaboration, K S and Λ production in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. Lett. 111 (2013) 222301 [arXiv:1307.5530] [INSPIRE].

  74. [74]

    J. Podolanski and R. Armenteros, Analysis of V-events, Phil. Mag. 45 (1954) 13.

    Article  Google Scholar 

  75. [75]

    ALICE collaboration, Multi-strange baryon production at mid-rapidity in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Lett. B 728 (2014) 216 [arXiv:1307.5543] [INSPIRE].

  76. [76]

    N. Borghini and J.Y. Ollitrault, Azimuthally sensitive correlations in nucleus-nucleus collisions, Phys. Rev. C 70 (2004) 064905 [nucl-th/0407041] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    STAR collaboration, B.I. Abelev et al., Centrality dependence of charged hadron and strange hadron elliptic flow from \( \sqrt{s_{NN}}=200 \) GeV Au + Au collisions, Phys. Rev. C 77 (2008) 054901 [arXiv:0801.3466] [INSPIRE].

  78. [78]

    R. Brun, F. Carminati and S. Giani, GEANT Detector Description and Simulation Tool, [INSPIRE].

  79. [79]

    B.B. Abelev et al., K *(892)0 and ϕ(1020) production in Pb-Pb collisions at \( \sqrt{s_{NN}}=2.76 \) TeV, Phys. Rev. C 91 (2015) 024609 [arXiv:1404.0495] [INSPIRE].

    ADS  Google Scholar 

  80. [80]

    H. Song and U.W. Heinz, Suppression of elliptic flow in a minimally viscous quark-gluon plasma, Phys. Lett. B 658 (2008) 279 [arXiv:0709.0742] [INSPIRE].

    ADS  Article  Google Scholar 

  81. [81]

    H. Song and U.W. Heinz, Causal viscous hydrodynamics in 2+1 dimensions for relativistic heavy-ion collisions, Phys. Rev. C 77 (2008) 064901 [arXiv:0712.3715] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    H. Song and U.W. Heinz, Multiplicity scaling in ideal and viscous hydrodynamics, Phys. Rev. C 78 (2008) 024902 [arXiv:0805.1756] [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301 [Erratum ibid. 109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].

  84. [84]

    H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, Hadron spectra and elliptic flow for 200 A GeV Au+Au collisions from viscous hydrodynamics coupled to a Boltzmann cascade, Phys. Rev. C 83 (2011) 054910 [Erratum ibid. C 86 (2012) 059903] [arXiv:1101.4638] [INSPIRE].

  85. [85]

    H. Song, S. Bass and U.W. Heinz, Spectra and elliptic flow for identified hadrons in 2.76A TeV Pb + Pb collisions, Phys. Rev. C 89 (2014) 034919 [arXiv:1311.0157] [INSPIRE].

    ADS  Google Scholar 

  86. [86]

    H.-J. Drescher and Y. Nara, Eccentricity fluctuations from the color glass condensate at RHIC and LHC, Phys. Rev. C 76 (2007) 041903 [arXiv:0707.0249] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    S.A. Bass, M. Belkacem, M. Bleicher, M. Brandstetter, L. Bravina et al., Microscopic models for ultrarelativistic heavy ion collisions, Prog. Part. Nucl. Phys. 41 (1998) 255 [Prog. Part. Nucl. Phys. 41 (1998) 225] [nucl-th/9803035] [INSPIRE].

  88. [88]

    M. Bleicher, E. Zabrodin, C. Spieles, S.A. Bass, C. Ernst et al., Relativistic hadron hadron collisions in the ultrarelativistic quantum molecular dynamics model, J. Phys. G 25 (1999) 1859 [hep-ph/9909407] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors