Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Dark Matter constraints on composite Higgs models
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Dark matter in (partially) composite Higgs models

14 December 2018

Tommi Alanne, Diogo Buarque Franzosi, … Martin Rosenlyst

Composite 2HDM with singlets: a viable dark matter scenario

18 October 2019

Alessandro Davoli, Andrea De Simone, … Alessandro Morandini

Matter and dark matter asymmetry from a composite Higgs model

26 April 2021

M. Ahmadvand

The Higgs-portal for dark matter: effective field theories versus concrete realizations

24 July 2021

Giorgio Arcadi, Abdelhak Djouadi & Marumi Kado

Composite dark matter phenomenology in the presence of lighter degrees of freedom

20 July 2020

Maria Ramos

Confronting dark fermion with a doubly charged Higgs in the left–right symmetric model

05 October 2022

Shyamashish Dey, Purusottam Ghosh & Santosh Kumar Rai

Composite Higgs and Dark Matter model in SU(6)/SO(6)

04 October 2019

Giacomo Cacciapaglia, Haiying Cai, … Ashwani Kushwaha

Confronting grand unification with lepton flavour violation, dark matter and LHC data

30 September 2020

J. Ellis, M. E. Gómez, … Q. Shafi

Confronting dark matter co-annihilation of Inert two Higgs Doublet Model with a compressed mass spectrum

03 June 2020

Yue-Lin Sming Tsai, Chih-Ting Lu & Van Que Tran

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 23 June 2015

Dark Matter constraints on composite Higgs models

  • Nayara Fonseca1,2,
  • Renata Zukanovich Funchal1,
  • Andre Lessa1 &
  • …
  • Laura Lopez-Honorez3 

Journal of High Energy Physics volume 2015, Article number: 154 (2015) Cite this article

  • 542 Accesses

  • 35 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

In composite Higgs models the pseudo-Nambu-Goldstone Boson (pNGB) nature of the Higgs field is an interesting alternative for explaining the smallness of the electroweak scale with respect to the beyond the Standard Model scale. In non-minimal models additional pNGB states are present and can be a Dark Matter (DM) candidate, if there is an approximate symmetry suppressing their decay. Here we assume that the low energy effective theory (for scales much below the compositeness scale) corresponds to the Standard Model with a pNGB Higgs doublet and a pNGB DM multiplet. We derive general effective DM Lagrangians for several possible DM representations (under the SM gauge group), including the singlet, doublet and triplet cases. Within this framework we discuss how the DM observables (relic abundance, direct and indirect detection) constrain the dimension-6 operators induced by the strong sector assuming that DM behaves as a Weakly Interacting Particle (WIMP) and that the relic abundance is settled through the freeze-out mechanism. We also apply our general results to two specific cosets: SO(6)/SO(5) and SO(6)/SO(4)×SO(2), which contain a singlet and doublet DM candidate, respectively. In particular we show that if compositeness is a solution to the little hierarchy problem, representations larger than the triplet are strongly disfavored. Furthermore, we find that composite models can have viable DM candidates with much smaller direct detection cross-sections than their non-composite counterparts, making DM detection much more challenging.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  2. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  3. F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev. Lett. 13 (1964) 321 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. P.W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  5. P.W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964) 508 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. H. Baer and X. Tata, Weak scale supersymmetry: From superfields to scattering events, Cambridge University Press, Cambridge, U.K. (2006).

    Book  MATH  Google Scholar 

  7. M. Drees, R. Godbole and P. Roy, Theory and phenomenology of sparticles: An account of four-dimensional N = 1 supersymmetry in high energy physics, World Scientific, (2004) [INSPIRE].

  8. S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  9. D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    Article  ADS  Google Scholar 

  10. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].

    ADS  Google Scholar 

  12. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the Composite Higgs Mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    Article  ADS  Google Scholar 

  13. H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  15. K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Marzocca and A. Urbano, Composite Dark Matter and LHC Interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Chala, h → γγ excess and Dark Matter from Composite Higgs Models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].

    Article  ADS  Google Scholar 

  19. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

    Article  ADS  Google Scholar 

  20. Fermi-LAT collaboration, M. Ackermann et al., Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope, Phys. Rev. D 89 (2014) 042001 [arXiv:1310.0828] [INSPIRE].

    ADS  Google Scholar 

  21. B. Anderson, A search for dark matter annihilation in Dwarf Spheroidal Galaxies with Pass 8 Data, in proceedings of The Fifth International Fermi Symposium, Nagoya, Japan, 20-24 October 2014.

  22. T. Bringmann and C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].

    Article  Google Scholar 

  23. N. Zhou, Z. Khechadoorian, D. Whiteson and T.M.P. Tait, Bounds on Invisible Higgs boson Decays from \( t\overline{t}H \) Production, Phys. Rev. Lett. 113 (2014) 151801 [arXiv:1408.0011] [INSPIRE].

    Article  ADS  Google Scholar 

  24. ATLAS collaboration, Search for Invisible Decays of a Higgs Boson Produced in Association with a Z Boson in ATLAS, Phys. Rev. Lett. 112 (2014) 201802 [arXiv:1402.3244] [INSPIRE].

    Article  ADS  Google Scholar 

  25. CMS collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes, Eur. Phys. J. C 74 (2014) 2980 [arXiv:1404.1344] [INSPIRE].

    ADS  Google Scholar 

  26. Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].

    Article  Google Scholar 

  27. L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A.C. Vincent, Constraints on dark matter annihilation from CMB observationsbefore Planck, JCAP 07 (2013) 046 [arXiv:1303.5094] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].

    ADS  Google Scholar 

  29. S. Galli, Preliminary Planck results on DM annihilation, talk given at Planck 2014 — The microwave sky in temperature and polarization, Ferrara, Italy, 1-5 December 2014.

  30. J. Mrazek et al., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  31. B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Y. Kikuta, Y. Okada and Y. Yamamoto, Structure of dimension-six derivative interactions in pseudo Nambu-Goldstone N Higgs doublet models, Phys. Rev. D 85 (2012) 075021 [arXiv:1111.2120] [INSPIRE].

    ADS  Google Scholar 

  33. R. Alonso, I. Brivio, B. Gavela, L. Merlo and S. Rigolin, Sigma Decomposition, JHEP 12 (2014) 034 [arXiv:1409.1589] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Carmona and F. Goertz, A naturally light Higgs without light Top Partners, JHEP 05 (2015) 002 [arXiv:1410.8555] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Alanne, H. Gertov, F. Sannino and K. Tuominen, Elementary Goldstone Higgs boson and dark matter, Phys. Rev. D 91 (2015) 095021 [arXiv:1411.6132] [INSPIRE].

    ADS  Google Scholar 

  36. T.A. Ryttov and F. Sannino, Ultra Minimal Technicolor and its Dark Matter TIMP, Phys. Rev. D 78 (2008) 115010 [arXiv:0809.0713] [INSPIRE].

    ADS  Google Scholar 

  37. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev. 177 (1969) 2239 [INSPIRE].

    Article  ADS  Google Scholar 

  38. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Panico, M. Redi, A. Tesi and A. Wulzer, On the Tuning and the Mass of the Composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].

    Article  ADS  Google Scholar 

  40. M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Hambye, F.-S. Ling, L. Lopez Honorez and J. Rocher, Scalar Multiplet Dark Matter, JHEP 07 (2009) 090 [arXiv:0903.4010] [INSPIRE].

    Article  ADS  Google Scholar 

  43. X.-l. Chen and M. Kamionkowski, Three body annihilation of neutralinos below two-body thresholds, JHEP 07 (1998) 001 [hep-ph/9805383] [INSPIRE].

    Article  ADS  Google Scholar 

  44. Y. Hosotani, P. Ko and M. Tanaka, Stable Higgs Bosons as Cold Dark Matter, Phys. Lett. B 680 (2009) 179 [arXiv:0908.0212] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C.E. Yaguna, Large contributions to dark matter annihilation from three-body final states, Phys. Rev. D 81 (2010) 075024 [arXiv:1003.2730] [INSPIRE].

    ADS  Google Scholar 

  46. L. Lopez Honorez and C.E. Yaguna, The inert doublet model of dark matter revisited, JHEP 09 (2010) 046 [arXiv:1003.3125] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  48. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  49. T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].

    ADS  Google Scholar 

  50. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].

    Article  ADS  Google Scholar 

  53. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [arXiv:1212.3305] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  54. J. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].

    Article  Google Scholar 

  55. G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Mrazek et al., The Other Natural Two Higgs Doublet Model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

    Article  ADS  Google Scholar 

  58. T. Corbett, O. Éboli and M. Gonzalez-Garcia, Unitarity Constraints on Dimension-Six Operators, Phys. Rev. D 91 (2015) 035014 [arXiv:1411.5026] [INSPIRE].

    ADS  Google Scholar 

  59. WMAP collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].

    Article  Google Scholar 

  60. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  62. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

    Article  ADS  Google Scholar 

  63. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Klasen, C.E. Yaguna and J.D. Ruiz-Alvarez, Electroweak corrections to the direct detection cross section of inert Higgs dark matter, Phys. Rev. D 87 (2013) 075025 [arXiv:1302.1657] [INSPIRE].

    ADS  Google Scholar 

  65. T. Abe and R. Sato, Quantum corrections to the spin-independent cross section of the inert doublet dark matter, JHEP 03 (2015) 109 [arXiv:1501.04161] [INSPIRE].

    Article  Google Scholar 

  66. WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [INSPIRE].

    Article  Google Scholar 

  67. PAMELA collaboration, O. Adriani et al., PAMELA Measurements of Cosmic-ray Proton and Helium Spectra, Science 332 (2011) 69 [arXiv:1103.4055] [INSPIRE].

    Article  Google Scholar 

  68. O. Adriani et al., Measurement of the flux of primary cosmic ray antiprotons with energies of 60-MeV to 350-GeV in the PAMELA experiment, JETP Lett. 96 (2013) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  69. C. Evoli, I. Cholis, D. Grasso, L. Maccione and P. Ullio, Antiprotons from dark matter annihilation in the Galaxy: astrophysical uncertainties, Phys. Rev. D 85 (2012) 123511 [arXiv:1108.0664] [INSPIRE].

    ADS  Google Scholar 

  70. M. Cirelli, D. Gaggero, G. Giesen, M. Taoso and A. Urbano, Antiproton constraints on the GeV gamma-ray excess: a comprehensive analysis, JCAP 12 (2014) 045 [arXiv:1407.2173] [INSPIRE].

    Article  ADS  Google Scholar 

  71. S. Kraml et al., SModelS: a tool for interpreting simplified-model results from the LHC and its application to supersymmetry, Eur. Phys. J. C 74 (2014) 2868 [arXiv:1312.4175] [INSPIRE].

    Article  ADS  Google Scholar 

  72. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: An alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

    ADS  Google Scholar 

  73. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

    Article  ADS  Google Scholar 

  74. I.F. Ginzburg, K.A. Kanishev, M. Krawczyk and D. Sokolowska, Evolution of Universe to the present inert phase, Phys. Rev. D 82 (2010) 123533 [arXiv:1009.4593] [INSPIRE].

    ADS  Google Scholar 

  75. E. Lundstrom, M. Gustafsson and J. Edsjo, The Inert Doublet Model and LEP II Limits, Phys. Rev. D 79 (2009) 035013 [arXiv:0810.3924] [INSPIRE].

    ADS  Google Scholar 

  76. Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [INSPIRE].

    ADS  Google Scholar 

  77. A. Pierce and J. Thaler, Natural Dark Matter from an Unnatural Higgs Boson and New Colored Particles at the TeV Scale, JHEP 08 (2007) 026 [hep-ph/0703056] [INSPIRE].

    Article  ADS  Google Scholar 

  78. M. Gustafsson, The Inert Doublet Model and Its Phenomenology, PoS(CHARGED 2010)030 [arXiv:1106.1719] [INSPIRE].

  79. L. Lopez Honorez and C.E. Yaguna, A new viable region of the inert doublet model, JCAP 01 (2011) 002 [arXiv:1011.1411] [INSPIRE].

    ADS  Google Scholar 

  80. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and Astrophysics of Minimal Dark Matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    Article  ADS  Google Scholar 

  81. A. Sommerfeld, Diffraction and Retardation of Electrons, Annalen Phys. 403 (1931) 257.

    Article  ADS  Google Scholar 

  82. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  83. G. Burdman, N. Fonseca and L. de Lima, Full-hierarchy Quiver Theories of Electroweak Symmetry Breaking and Fermion Masses, JHEP 01 (2013) 094 [arXiv:1210.5568] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Instituto de Física, Universidade de São Paulo, R. do Matão 187, São Paulo, SP, 05508-900, Brazil

    Nayara Fonseca, Renata Zukanovich Funchal & Andre Lessa

  2. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

    Nayara Fonseca

  3. Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium

    Laura Lopez-Honorez

Authors
  1. Nayara Fonseca
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Renata Zukanovich Funchal
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Andre Lessa
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Laura Lopez-Honorez
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andre Lessa.

Additional information

ArXiv ePrint: 1501.05957

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fonseca, N., Funchal, R.Z., Lessa, A. et al. Dark Matter constraints on composite Higgs models. J. High Energ. Phys. 2015, 154 (2015). https://doi.org/10.1007/JHEP06(2015)154

Download citation

  • Received: 25 February 2015

  • Revised: 13 May 2015

  • Accepted: 28 May 2015

  • Published: 23 June 2015

  • DOI: https://doi.org/10.1007/JHEP06(2015)154

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Technicolor and Composite Models
  • Phenomenological Models
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.