Skip to main content

Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

A preprint version of the article is available at arXiv.

Abstract

The OPERA experiment, exposed to the CERN to Gran Sasso ν μ beam, collected data from 2008 to 2012. Four oscillated ν τ Charged Current interaction candidates have been detected in appearance mode, which are consistent with ν μ → ν τ oscillations at the atmospheric Δm 2 within the “standard” three-neutrino framework. In this paper, the OPERA ν τ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.

References

  1. [1]

    OPERA collaboration, R. Acquafredda et al., The OPERA experiment in the CERN to Gran Sasso neutrino beam, 2009 JINST 4 P04018 [INSPIRE].

  2. [2]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

    Google Scholar 

  3. [3]

    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  Google Scholar 

  4. [4]

    OPERA collaboration, N. Agafonova et al., Observation of a first ν τ candidate in the OPERA experiment in the CNGS beam, Phys. Lett. B 691 (2010) 138 [arXiv:1006.1623] [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    OPERA collaboration, N. Agafonova et al., New results on ν μ → ν τ appearance with the OPERA experiment in the CNGS beam, JHEP 11 (2013) 036 [Erratum ibid. 04 (2014) 014] [arXiv:1308.2553] [INSPIRE].

  6. [6]

    OPERA collaboration, N. Agafonova et al., Evidence for ν μ → ν τ appearance in the CNGS neutrino beam with the OPERA experiment, Phys. Rev. D 89 (2014) 051102 [arXiv:1401.2079] [INSPIRE].

    ADS  Google Scholar 

  7. [7]

    OPERA collaboration, N. Agafonova et al., Observation of τ neutrino appearance in the CNGS beam with the OPERA experiment, Prog. Theor. Exp. Phys. 2014 (2014) 101C01 [arXiv:1407.3513] [INSPIRE].

    Article  Google Scholar 

  8. [8]

    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of \( {\overline{\nu}}_e \) appearance in a \( {\overline{\nu}}_{\mu } \) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

    Google Scholar 

  9. [9]

    MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., Improved search for \( {\overline{\nu}}_{\mu}\to {\overline{\nu}}_e \) oscillations in the MiniBooNE experiment, Phys. Rev. Lett. 110 (2013) 161801 [arXiv:1207.4809] [INSPIRE].

    Article  Google Scholar 

  10. [10]

    G. Mention et al., The reactor antineutrino anomaly, Phys. Rev. D 83 (2011) 073006 [arXiv:1101.2755] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    M.A. Acero, C. Giunti and M. Laveder, Limits on ν e and \( {\overline{\nu}}_e \) disappearance from Gallium and reactor experiments, Phys. Rev. D 78 (2008) 073009 [arXiv:0711.4222] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    C. Giunti and M. Laveder, Statistical significance of the Gallium anomaly, Phys. Rev. C 83 (2011) 065504 [arXiv:1006.3244] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, [arXiv:1502.01589] [INSPIRE].

  14. [14]

    NOMAD collaboration, P. Astier et al., Final NOMAD results on ν μ ν τ and ν e ν τ oscillations including a new search for ν τ appearance using hadronic τ decays, Nucl. Phys. B 611 (2001) 3 [hep-ex/0106102] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    CHORUS collaboration, E. Eskut et al., Final results on ν μ → ν τ oscillation from the CHORUS experiment, Nucl. Phys. B 793 (2008) 326 [arXiv:0710.3361] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    N. Agafonova et al., The detection of neutrino interactions in the emulsion/lead target of the OPERA experiment, 2009 JINST 4 P06020 [arXiv:0903.2973] [INSPIRE].

  17. [17]

    K. Elsener, The CERN neutrino beam to Gran Sasso (NGS): conceptual technical design, CERN-98-02, CERN, Geneva Switzerland (1998) [INFN-AE-98-05].

  18. [18]

    R. Bailey et al., The CERN Neutrino beam to Gran Sasso (NGS): addendum to report no. CERN-98-02, INFN-AE-98-05, CERN-SL-99-034(DI), CERN, Geneva Switzerland (1999) [INFN-AE-99-05].

  19. [19]

    CNGS neutrino flux calculations webpage, http://www.mi.infn.it/∼psala/Icarus/cngs.html.

  20. [20]

    OPERA collaboration, A. Anokhina et al., Emulsion sheet doublets as interface trackers for the OPERA experiment, 2008 JINST 3 P07005 [arXiv:0804.1985] [INSPIRE].

  21. [21]

    OPERA collaboration, N. Agafonova et al., Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays, Eur. Phys. J. C 74 (2014) 2986 [arXiv:1404.4357] [INSPIRE].

    Google Scholar 

  22. [22]

    Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  23. [23]

    J. Kopp, P.A.N. Machado, M. Maltoni and T. Schwetz, Sterile neutrino oscillations: the global picture, JHEP 05 (2013) 050 [arXiv:1303.3011] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    Super-Kamiokande collaboration, K. Abe et al., Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    F. Dydak et al., A search for ν μ oscillations in the Δm 2 range 0.3 eV2 to 90 eV2, Phys. Lett. B 134 (1984) 281 [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    I.E. Stockdale et al., Limits on muon neutrino oscillations in the mass range 55 eV2 < Δm 2 < 800 eV2, Phys. Rev. Lett. 52 (1984) 1384 [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    MiniBooNE and SciBooNE collaborations, G. Cheng et al., Dual baseline search for muon antineutrino disappearance at 0.1 eV2 < Δm 2 < 100 eV2, Phys. Rev. D 86 (2012) 052009 [arXiv:1208.0322] [INSPIRE].

    Google Scholar 

  28. [28]

    MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].

  29. [29]

    MINOS collaboration, P. Adamson et al., Active to sterile neutrino mixing limits from neutral-current interactions in MINOS, Phys. Rev. Lett. 107 (2011) 011802 [arXiv:1104.3922] [INSPIRE].

    Article  Google Scholar 

  30. [30]

    P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    F.D. Stacey, Physics of the earth, 2nd ed., Wiley, U.S.A. (1977).

    Google Scholar 

  34. [34]

    S. Dusini et al., Search for sterile neutrino mixing in the ν μ → ν τ appearance channel with the OPERA detector, http://operaweb.lngs.infn.it/Opera/publicnotes/OPERA-public-note-175.pdf.

  35. [35]

    G.J. Feldman and R.D. Cousins, A unified approach to the classical statistical analysis of small signals, Phys. Rev. D 57 (1998) 3873 [physics/9711021] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Consortia

Corresponding authors

Correspondence to A. Paoloni or A. Pastore.

Additional information

ArXiv ePrint: 1503.01876

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The OPERA collaboration., Agafonova, N., Aleksandrov, A. et al. Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam. J. High Energ. Phys. 2015, 69 (2015). https://doi.org/10.1007/JHEP06(2015)069

Download citation

Keywords

  • Oscillation
  • Neutrino Detectors and Telescopes
  • Beyond Standard Model