R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].
J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci.
60 (2010) 405 [arXiv:1002.0329] [INSPIRE].
ADS
Google Scholar
J.L. Hewett et al., Fundamental physics at the intensity frontier, arXiv:1205.2671 [INSPIRE].
B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett.
B 166 (1986) 196 [INSPIRE].
ADS
Google Scholar
R. Foot and X.-G. He, Comment on ZZ′ mixing in extended gauge theories, Phys. Lett.
B 267 (1991) 509 [INSPIRE].
ADS
Google Scholar
S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP
05 (2000) 003 [hep-ph/0001179] [INSPIRE].
ADS
Google Scholar
P. Arias et al., WISPy cold dark matter, JCAP
06 (2012) 013 [arXiv:1201.5902] [INSPIRE].
ADS
Google Scholar
N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev.
D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
ADS
Google Scholar
N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP
12 (2008) 104 [arXiv:0810.0714] [INSPIRE].
ADS
Google Scholar
C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev.
D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].
ADS
Google Scholar
A. Katz and R. Sundrum, Breaking the dark force, JHEP
06 (2009) 003 [arXiv:0902.3271] [INSPIRE].
ADS
Google Scholar
D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP
07 (2009) 050 [arXiv:0904.2567] [INSPIRE].
ADS
Google Scholar
M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP
11 (2009) 027 [arXiv:0909.0515] [INSPIRE].
ADS
Google Scholar
R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, submitted to Phys. Rev. D (2010), arXiv:1004.0691 [INSPIRE].
S. Andreas, M.D. Goodsell and A. Ringwald, Dark matter and dark forces from a supersymmetric hidden sector, Phys. Rev.
D 87 (2013) 025007 [arXiv:1109.2869] [INSPIRE].
ADS
Google Scholar
M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev.
D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
ADS
Google Scholar
B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev.
D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].
ADS
Google Scholar
M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP
07 (2009) 051 [arXiv:0904.1743] [INSPIRE].
ADS
Google Scholar
J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev.
D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].
ADS
Google Scholar
B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev.
D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].
ADS
Google Scholar
P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev.
D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].
ADS
Google Scholar
E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, Phys. Rev.
D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].
ADS
Google Scholar
M.D. Diamond and P. Schuster, Searching for light dark matter with the SLAC millicharge experiment, Phys. Rev. Lett.
111 (2013) 221803 [arXiv:1307.6861] [INSPIRE].
ADS
Google Scholar
R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining light dark matter with low-energy e
+
e
−
colliders, JHEP
11 (2013) 167 [arXiv:1309.5084] [INSPIRE].
ADS
Google Scholar
P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev.
D 81 (2010) 016002 [arXiv:0910.1602] [INSPIRE].
ADS
Google Scholar
Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley, JHEP
05 (2012) 155 [arXiv:1112.2705] [INSPIRE].
ADS
Google Scholar
S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].
W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev.
D 74 (2006) 095005 [Erratum ibid.
D 79 (2009) 039902] [hep-ph/0608068] [INSPIRE].
E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP
02 (2011) 100 [arXiv:1011.3300] [INSPIRE].
ADS
Google Scholar
A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys.
2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].
MathSciNet
Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev.
D 86 (2012) 010001 [INSPIRE].
ADS
Google Scholar
H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g − 2, Phys. Rev.
D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].
ADS
Google Scholar
G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g − 2, JHEP
11 (2012) 113 [arXiv:1208.6583] [INSPIRE].
ADS
Google Scholar
M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g − 2 and hydrogen spectroscopy, Phys. Rev.
D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].
ADS
Google Scholar
D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett.
100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].
ADS
Google Scholar
T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, Phys. Rev. Lett.
109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].
ADS
Google Scholar
R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett.
106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].
ADS
Google Scholar
BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar in radiative transitions τ
3S
→ γA
0, arXiv:0902.2176 [INSPIRE].
BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions
\( \varUpsilon \) → γA
0, Phys. Rev. Lett.
103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
ADS
Google Scholar
N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e
+
e
−
colliders, Phys. Rev. Lett.
96 (2006) 141802 [hep-ph/0510147] [INSPIRE].
ADS
Google Scholar
F. Archilli et al., Search for a vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett.
B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
ADS
Google Scholar
KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett.
B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
ADS
Google Scholar
WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π
0 → e
+
e
−
γ decay, Phys. Lett.
B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].
ADS
Google Scholar
B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, Phys. Rev.
D 83 (2011) 054005 [arXiv:0911.4938] [INSPIRE].
ADS
Google Scholar
J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV < m
h
< 10 GeV) mixing with the SM Higgs, JHEP
02 (2014) 123 [arXiv:1310.8042] [INSPIRE].
ADS
Google Scholar
Y.G. Aditya, K.J. Healey and A.A. Petrov, Searching for super-WIMPs in leptonic heavy meson decays, Phys. Lett.
B 710 (2012) 118 [arXiv:1201.1007] [INSPIRE].
ADS
Google Scholar
BaBar collaboration, B. Aubert et al., Search for invisible decays of a light scalar in radiative transitions υ
3S
→ γA
0, arXiv:0808.0017 [INSPIRE].
E787 collaboration, S. Adler et al., Further search for the decay K
+ → π
+
νn¯u in the momentum region P < 195 MeV/c, Phys. Rev.
D 70 (2004) 037102 [hep-ex/0403034] [INSPIRE].
ADS
Google Scholar
BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay K
+ → π
+
νn¯u in the momentum region 140 < P (π) < 199 MeV/c, Phys. Rev.
D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].
ADS
Google Scholar
BaBar collaboration, P. Harrison and H. R. Quinn, The BABAR physics book: physics at an asymmetric B factory, SLAC-R-0504 (1998) [INSPIRE].
R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e
+
e
−
colliders, Phys. Rev.
D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].
ADS
Google Scholar
BaBar collaboration, B. Aubert et al., Search for a narrow resonance in e
+
e
−
to four lepton final states, arXiv:0908.2821 [INSPIRE].
BaBar collaboration, J.P. Lees et al., Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett.
108 (2012) 211801 [arXiv:1202.1313] [INSPIRE].
ADS
Google Scholar
M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett.
B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
ADS
Google Scholar
M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett.
B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
ADS
Google Scholar
S. Chang, A. Pierce and N. Weiner, Momentum dependent dark matter scattering, JCAP
01 (2010) 006 [arXiv:0908.3192] [INSPIRE].
ADS
Google Scholar
P. Cushman et al., Working group report: WIMP dark matter direct detection, arXiv:1310.8327 [INSPIRE].
R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev.
D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
ADS
Google Scholar
R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett.
109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].
ADS
Google Scholar
M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev.
D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].
ADS
Google Scholar
K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev.
D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].
ADS
Google Scholar
W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett.
70 (1993) 2661 [INSPIRE].
ADS
Google Scholar
R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and γ-ray observations, JHEP
11 (2013) 193 [arXiv:1309.4091] [INSPIRE].
ADS
Google Scholar
M. Pospelov and J. Pradler, Metastable GeV-scale particles as a solution to the cosmological lithium problem, Phys. Rev.
D 82 (2010) 103514 [arXiv:1006.4172] [INSPIRE].
ADS
Google Scholar
J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on light hidden sector gauge bosons from supernova cooling, arXiv:1201.2683 [INSPIRE].
H.K. Dreiner, J.-F. Fortin, C. Hanhart and L. Ubaldi, Supernova constraints on MeV dark sectors from e
+
e
−
annihilations, Phys. Rev.
D 89 (2014) 105015 [arXiv:1310.3826] [INSPIRE].
ADS
Google Scholar
S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev.
D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].
ADS
Google Scholar
A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett.
106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
ADS
Google Scholar
APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett.
107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
ADS
Google Scholar
S. Andreas, Hidden photons in beam dump experiments and in connection with dark matter, Frascati Phys. Ser.
56 (2012) 23 [arXiv:1212.4520] [INSPIRE].
Google Scholar
R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A
′
decaying to e
+
e
−, JHEP
02 (2011) 009 [arXiv:1001.2557] [INSPIRE].
ADS
Google Scholar
M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP
01 (2010) 111 [arXiv:0909.2862] [INSPIRE].
ADS
Google Scholar
Heavy Photon Search collaboration,
Heavy Photon Search experiment
.
P.H. Adrian, The Heavy Photon Search experiment, arXiv:1301.1103 [INSPIRE].
K.J. Kim and Y.-S. Tsai, Improved Weizsacker-Williams method and its application to lepton and W boson pair production, Phys. Rev.
D 8 (1973) 3109 [INSPIRE].
ADS
Google Scholar
T. Beranek and M. Vanderhaeghen, Study of the discovery potential for hidden photon emission at future electron scattering fixed target experiments, arXiv:1311.5104 [INSPIRE].
E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett.
59 (1987) 755 [INSPIRE].
ADS
Google Scholar
Y.-S. Tsai, Axion bremsstrahlung by an electron beam, Phys. Rev.
D 34 (1986) 1326 [INSPIRE].
ADS
Google Scholar
J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev.
D 38 (1988) 3375 [INSPIRE].
ADS
Google Scholar
A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett.
67 (1991) 2942 [INSPIRE].
ADS
Google Scholar
A. Konaka et al., Search for neutral particles in electron beam dump experiment, Phys. Rev. Lett.
57 (1986) 659 [INSPIRE].
ADS
Google Scholar
M. Davier and H. Nguyen Ngoc, An unambiguous search for a light Higgs boson, Phys. Lett.
B 229 (1989) 150 [INSPIRE].
ADS
Google Scholar
S.N. Gninenko, Search for MeV dark photons in a light-shining-through-walls experiment at CERN, Phys. Rev.
D 89 (2014) 075008 [arXiv:1308.6521] [INSPIRE].
ADS
Google Scholar
S. Andreas et al., Proposal for an experiment to search for light dark matter at the SPS, arXiv:1312.3309 [INSPIRE].
B.C. Odom, D. Hanneke, B. D’Urso and G. Gabrielse, New measurement of the electron magnetic moment using a one-electron quantum cyclotron, Phys. Rev. Lett.
97 (2006) 030801 [Erratum ibid.
99 (2007) 039902] [INSPIRE].
S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett.
B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].
ADS
Google Scholar
P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev.
D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].
ADS
Google Scholar
J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton bremsstrahlung in beam-dump data, Phys. Lett.
B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].
ADS
Google Scholar
J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett.
B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].
ADS
Google Scholar
S.N. Gninenko, Stringent limits on the π
0 → γX, X → e
+
e
−
decay from neutrino experiments and constraints on new light gauge bosons, Phys. Rev.
D 85 (2012) 055027 [arXiv:1112.5438] [INSPIRE].
ADS
Google Scholar
H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev.
D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].
ADS
Google Scholar
R. Burman and E. Smith, Parametrization of pion production and reaction cross-sections at LAMPF energies, LA-11502-MS (1989) [INSPIRE].
MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., The neutrino flux prediction at MiniBooNE, Phys. Rev.
D 79 (2009) 072002 [arXiv:0806.1449] [INSPIRE].
ADS
Google Scholar
G. Tel-Zur, Electron pair production in p-Be and p-Au collisions at 450 GeV/c (2014).
M. Bourquin and J.-M. Gaillard, Vector meson and ψ contributions to single lepton spectra, Phys. Lett.
B 59 (1975) 191 [INSPIRE].
ADS
Google Scholar
M. Bourquin and J.-M. Gaillard, A simple phenomenological description of hadron production, Nucl. Phys.
B 114 (1976) 334 [INSPIRE].
ADS
Google Scholar
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, arXiv:1310.1921 [INSPIRE].
C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun.
182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].
ADS
MATH
Google Scholar
C. Degrande et al., UFO — The universal FeynRules output, Comput. Phys. Commun.
183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
ADS
Google Scholar
J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP
06 (2011) 128 [arXiv:1106.0522] [INSPIRE].
ADS
Google Scholar
CHARM collaboration, F. Bergsma et al., Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett.
B 157 (1985) 458 [INSPIRE].
ADS
Google Scholar
CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett.
B 166 (1986) 473 [INSPIRE].
ADS
Google Scholar
MINOS Collaboration, I. Ambats et al., The MINOS detectors technical design report, NUMI-L-337 (1998) [INSPIRE].
MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett.
110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
ADS
Google Scholar
J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys.
C 51 (1991) 341 [INSPIRE].
Google Scholar
J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e
+
e
−
and μ
+
μ
−
pair production in a proton-iron beam dump experiment, Int. J. Mod. Phys.
A 7 (1992) 3835[INSPIRE].
ADS
Google Scholar
K. Abe et al., Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector, Nucl. Instrum. Meth.
A 694 (2012) 211 [arXiv:1111.3119] [INSPIRE].
ADS
Google Scholar
LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev.
D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
ADS
Google Scholar
LSND collaboration, L.B. Auerbach et al., Measurement of electron-neutrino-electron elastic scattering, Phys. Rev.
D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].
ADS
Google Scholar
S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel et al., Pion production in heavy ion collisions at SIS energies, Z. Phys.
A 356 (1997) 421 [nucl-th/9609009] [INSPIRE].
ADS
Google Scholar
V. Flaminio, W. Moorhead, D. Morrison and N. Rivoire, Compilation of cross-sections. 3. p and anti-p induced reactions, CERN-HERA-73-1 (1973) [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun.
178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
ADS
MATH
Google Scholar
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP
05 (2006) 026 [hep-ph/0603175] [INSPIRE].
ADS
Google Scholar
M. Aguilar-Benitez et al., Inclusive particle production in 400 GeV/c pp interactions, Z. Phys.
C 50 (1991) 405.
Google Scholar
G. Agakishiev et al., Neutral meson production in p Be and p Au collisions at 450 GeV beam energy, Eur. Phys. J.
C 4 (1998) 249 [INSPIRE].
ADS
Google Scholar
NA61/SHINE collaboration, N. Abgrall et al., Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c, Phys. Rev.
C 84 (2011) 034604 [arXiv:1102.0983] [INSPIRE].
ADS
Google Scholar
MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev.
D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].
ADS
Google Scholar
French-Soviet collaboration, M. Boratav et al., Gamma production and multiplicity correlations between neutral and charged pions in pp interactions at 69 GeV/c, Nucl. Phys.
B 111 (1976) 529 [INSPIRE].
ADS
Google Scholar
France-Soviet Union collaboration, H. Blumenfeld et al., Photon production in 69 GeV pp interactions, Phys. Lett.
B 45 (1973) 525 [INSPIRE].
ADS
Google Scholar
T2K collaboration, K. Abe et al., The T2K experiment, Nucl. Instrum. Meth.
A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].
ADS
Google Scholar
NOMAD collaboration, P. Astier et al., Search for heavy neutrinos mixing with τ neutrinos, Phys. Lett.
B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].
ADS
Google Scholar
G. Bernardi et al., Search for neutrino decay, Phys. Lett.
B 166 (1986) 479 [INSPIRE].
ADS
Google Scholar
G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett.
B 203 (1988) 332 [INSPIRE].
ADS
Google Scholar
MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., The MiniBooNE detector, Nucl. Instrum. Meth.
A 599 (2009) 28 [arXiv:0806.4201] [INSPIRE].
ADS
Google Scholar
S. Assylbekov et al., The T2K ND280 off-axis Pi-Zero detector, Nucl. Instrum. Meth.
A 686 (2012) 48 [arXiv:1111.5030] [INSPIRE].
ADS
Google Scholar
A.S. Kronfeld et al., Project X: physics opportunities, arXiv:1306.5009 [INSPIRE].
S. Holmes, S. Nagaitsev and R. Tschirhart, Project X: a flexible high power proton facility, arXiv:1305.3809 [INSPIRE].
S.J. Brodsky, F. Fleuret, C. Hadjidakis and J.P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rept.
522 (2013) 239 [arXiv:1202.6585] [INSPIRE].
ADS
Google Scholar
J.P. Lansberg et al., A Fixed-Target ExpeRiment at the LHC (AFTER@LHC): luminosities, target polarisation and a selection of physics studies, PoS(QNP2012)049 [arXiv:1207.3507] [INSPIRE].
M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [INSPIRE].
M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP
04 (2009) 014 [arXiv:0901.0283] [INSPIRE].
ADS
Google Scholar
C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP
04 (2010) 116 [arXiv:0909.0290] [INSPIRE].
ADS
Google Scholar
T. Beranek, H. Merkel and M. Vanderhaeghen, Theoretical framework to analyze searches for hidden light gauge bosons in electron scattering fixed target experiments, Phys. Rev.
D 88 (2013) 015032 [arXiv:1303.2540] [INSPIRE].
ADS
Google Scholar
J.R. Andersen, M. Rauch and M. Spannowsky, Dark sector spectroscopy at the ILC, arXiv:1308.4588 [INSPIRE].
A. Kumar, D.E. Morrissey and A. Spray, Kinetically-enhanced anomaly mediation, JHEP
12 (2011) 013 [arXiv:1109.1565] [INSPIRE].
ADS
Google Scholar
J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys.
B 343 (1990) 341 [INSPIRE].
ADS
Google Scholar
F. Bezrukov and D. Gorbunov, Light inflaton hunter’s guide, JHEP
05 (2010) 010 [arXiv:0912.0390] [INSPIRE].
ADS
Google Scholar
F. Bezrukov and D. Gorbunov, Light inflaton after LHC8 and WMAP9 results, JHEP
07 (2013) 140 [arXiv:1303.4395] [INSPIRE].
ADS
Google Scholar
Y.-S. Tsai, Pair production and bremsstrahlung of charged leptons, Rev. Mod. Phys.
46 (1974) 815 [Erratum ibid.
49 (1977) 521-423] [INSPIRE].