Skip to main content

New limits on light hidden sectors from fixed-target experiments

A preprint version of the article is available at arXiv.

Abstract

New physics can be light if it is hidden, coupling very weakly to the Standard Model. In this work we investigate the discovery prospects of Abelian hidden sectors in lower-energy fixed-target and high-precision experiments. We focus on a minimal supersymmetric realization consisting of an Abelian vector multiplet, coupled to hypercharge by kinetic mixing, and a pair of chiral Higgs multiplets. This simple theory can give rise to a broad range of experimental signals, including both commonly-studied patterns of hidden vector decay as well as new and distinctive hidden sector cascades. We find limits from the production of hidden states other than the vector itself. In particular, we show that if the hidden Abelian symmetry is higgsed, and the corresponding hidden Higgs boson has visible decays, it severely restricts the ability of the hidden sector to explain the anomalous muon magnetic moment.

References

  1. R. Essig et al., Working group report: new light weakly coupled particles, arXiv:1311.0029 [INSPIRE].

  2. J. Jaeckel and A. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

    ADS  Google Scholar 

  3. J.L. Hewett et al., Fundamental physics at the intensity frontier, arXiv:1205.2671 [INSPIRE].

  4. B. Holdom, Two U(1)’s and epsilon charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    ADS  Google Scholar 

  5. R. Foot and X.-G. He, Comment on ZZmixing in extended gauge theories, Phys. Lett. B 267 (1991) 509 [INSPIRE].

    ADS  Google Scholar 

  6. S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [INSPIRE].

    ADS  Google Scholar 

  7. P. Arias et al., WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

    ADS  Google Scholar 

  8. N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

    ADS  Google Scholar 

  9. N. Arkani-Hamed and N. Weiner, LHC signals for a superunified theory of dark matter, JHEP 12 (2008) 104 [arXiv:0810.0714] [INSPIRE].

    ADS  Google Scholar 

  10. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80 (2009) 035008 [arXiv:0902.3246] [INSPIRE].

    ADS  Google Scholar 

  11. A. Katz and R. Sundrum, Breaking the dark force, JHEP 06 (2009) 003 [arXiv:0902.3271] [INSPIRE].

    ADS  Google Scholar 

  12. D.E. Morrissey, D. Poland and K.M. Zurek, Abelian hidden sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].

    ADS  Google Scholar 

  13. M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, Naturally light hidden photons in LARGE volume string compactifications, JHEP 11 (2009) 027 [arXiv:0909.0515] [INSPIRE].

    ADS  Google Scholar 

  14. R. Essig, J. Kaplan, P. Schuster and N. Toro, On the origin of light dark matter species, submitted to Phys. Rev. D (2010), arXiv:1004.0691 [INSPIRE].

  15. S. Andreas, M.D. Goodsell and A. Ringwald, Dark matter and dark forces from a supersymmetric hidden sector, Phys. Rev. D 87 (2013) 025007 [arXiv:1109.2869] [INSPIRE].

    ADS  Google Scholar 

  16. M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].

    ADS  Google Scholar 

  17. B. Batell, M. Pospelov and A. Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79 (2009) 115008 [arXiv:0903.0363] [INSPIRE].

    ADS  Google Scholar 

  18. M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].

    ADS  Google Scholar 

  19. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].

    ADS  Google Scholar 

  20. B. Batell, M. Pospelov and A. Ritz, Exploring portals to a hidden sector through fixed targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

    ADS  Google Scholar 

  21. P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

    ADS  Google Scholar 

  22. E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New electron beam-dump experiments to search for MeV to few-GeV dark matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].

    ADS  Google Scholar 

  23. M.D. Diamond and P. Schuster, Searching for light dark matter with the SLAC millicharge experiment, Phys. Rev. Lett. 111 (2013) 221803 [arXiv:1307.6861] [INSPIRE].

    ADS  Google Scholar 

  24. R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining light dark matter with low-energy e + e colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].

    ADS  Google Scholar 

  25. P. Schuster, N. Toro and I. Yavin, Terrestrial and solar limits on long-lived particles in a dark sector, Phys. Rev. D 81 (2010) 016002 [arXiv:0910.1602] [INSPIRE].

    ADS  Google Scholar 

  26. Y.F. Chan, M. Low, D.E. Morrissey and A.P. Spray, LHC signatures of a minimal supersymmetric hidden valley, JHEP 05 (2012) 155 [arXiv:1112.2705] [INSPIRE].

    ADS  Google Scholar 

  27. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  28. W.-F. Chang, J.N. Ng and J.M.S. Wu, A very narrow shadow extra Z-boson at colliders, Phys. Rev. D 74 (2006) 095005 [Erratum ibid. D 79 (2009) 039902] [hep-ph/0608068] [INSPIRE].

  29. E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].

    ADS  Google Scholar 

  30. A. Hook, E. Izaguirre and J.G. Wacker, Model independent bounds on kinetic mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

    MathSciNet  Google Scholar 

  31. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  32. H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark side of Higgs diphoton decays and muon g − 2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].

    ADS  Google Scholar 

  33. G.F. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g − 2, JHEP 11 (2012) 113 [arXiv:1208.6583] [INSPIRE].

    ADS  Google Scholar 

  34. M. Endo, K. Hamaguchi and G. Mishima, Constraints on hidden photon models from electron g − 2 and hydrogen spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].

    ADS  Google Scholar 

  35. D. Hanneke, S. Fogwell and G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett. 100 (2008) 120801 [arXiv:0801.1134] [INSPIRE].

    ADS  Google Scholar 

  36. T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Tenth-order QED contribution to the electron g − 2 and an improved value of the fine structure constant, Phys. Rev. Lett. 109 (2012) 111807 [arXiv:1205.5368] [INSPIRE].

    ADS  Google Scholar 

  37. R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett. 106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].

    ADS  Google Scholar 

  38. BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar in radiative transitions τ 3S γA 0, arXiv:0902.2176 [INSPIRE].

  39. BaBar collaboration, B. Aubert et al., Search for dimuon decays of a light scalar boson in radiative transitions \( \varUpsilon \)γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].

    ADS  Google Scholar 

  40. N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e + e colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].

    ADS  Google Scholar 

  41. F. Archilli et al., Search for a vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].

    ADS  Google Scholar 

  42. KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].

    ADS  Google Scholar 

  43. WASA-at-COSY collaboration, P. Adlarson et al., Search for a dark photon in the π 0e + e γ decay, Phys. Lett. B 726 (2013) 187 [arXiv:1304.0671] [INSPIRE].

    ADS  Google Scholar 

  44. B. Batell, M. Pospelov and A. Ritz, Multi-lepton signatures of a hidden sector in rare B decays, Phys. Rev. D 83 (2011) 054005 [arXiv:0911.4938] [INSPIRE].

    ADS  Google Scholar 

  45. J.D. Clarke, R. Foot and R.R. Volkas, Phenomenology of a very light scalar (100 MeV < m h < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123 [arXiv:1310.8042] [INSPIRE].

    ADS  Google Scholar 

  46. Y.G. Aditya, K.J. Healey and A.A. Petrov, Searching for super-WIMPs in leptonic heavy meson decays, Phys. Lett. B 710 (2012) 118 [arXiv:1201.1007] [INSPIRE].

    ADS  Google Scholar 

  47. BaBar collaboration, B. Aubert et al., Search for invisible decays of a light scalar in radiative transitions υ 3S γA 0, arXiv:0808.0017 [INSPIRE].

  48. E787 collaboration, S. Adler et al., Further search for the decay K +π + νn¯u in the momentum region P < 195 MeV/c, Phys. Rev. D 70 (2004) 037102 [hep-ex/0403034] [INSPIRE].

    ADS  Google Scholar 

  49. BNL-E949 collaboration, A.V. Artamonov et al., Study of the decay K +π + νn¯u in the momentum region 140 < P (π) < 199 MeV/c, Phys. Rev. D 79 (2009) 092004 [arXiv:0903.0030] [INSPIRE].

    ADS  Google Scholar 

  50. BaBar collaboration, P. Harrison and H. R. Quinn, The BABAR physics book: physics at an asymmetric B factory, SLAC-R-0504 (1998) [INSPIRE].

  51. R. Essig, P. Schuster and N. Toro, Probing dark forces and light hidden sectors at low-energy e + e colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].

    ADS  Google Scholar 

  52. BaBar collaboration, B. Aubert et al., Search for a narrow resonance in e + e to four lepton final states, arXiv:0908.2821 [INSPIRE].

  53. BaBar collaboration, J.P. Lees et al., Search for low-mass dark-sector Higgs bosons, Phys. Rev. Lett. 108 (2012) 211801 [arXiv:1202.1313] [INSPIRE].

    ADS  Google Scholar 

  54. M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].

    ADS  Google Scholar 

  55. M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

    ADS  Google Scholar 

  56. S. Chang, A. Pierce and N. Weiner, Momentum dependent dark matter scattering, JCAP 01 (2010) 006 [arXiv:0908.3192] [INSPIRE].

    ADS  Google Scholar 

  57. P. Cushman et al., Working group report: WIMP dark matter direct detection, arXiv:1310.8327 [INSPIRE].

  58. R. Essig, J. Mardon and T. Volansky, Direct detection of sub-GeV dark matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Google Scholar 

  59. R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First direct detection limits on sub-GeV dark matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].

    ADS  Google Scholar 

  60. M. Kawasaki, K. Kohri and T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles, Phys. Rev. D 71 (2005) 083502 [astro-ph/0408426] [INSPIRE].

    ADS  Google Scholar 

  61. K. Jedamzik, Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles, Phys. Rev. D 74 (2006) 103509 [hep-ph/0604251] [INSPIRE].

    ADS  Google Scholar 

  62. W. Hu and J. Silk, Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett. 70 (1993) 2661 [INSPIRE].

    ADS  Google Scholar 

  63. R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and γ-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].

    ADS  Google Scholar 

  64. M. Pospelov and J. Pradler, Metastable GeV-scale particles as a solution to the cosmological lithium problem, Phys. Rev. D 82 (2010) 103514 [arXiv:1006.4172] [INSPIRE].

    ADS  Google Scholar 

  65. J.B. Dent, F. Ferrer and L.M. Krauss, Constraints on light hidden sector gauge bosons from supernova cooling, arXiv:1201.2683 [INSPIRE].

  66. H.K. Dreiner, J.-F. Fortin, C. Hanhart and L. Ubaldi, Supernova constraints on MeV dark sectors from e + e annihilations, Phys. Rev. D 89 (2014) 105015 [arXiv:1310.3826] [INSPIRE].

    ADS  Google Scholar 

  67. S. Andreas, C. Niebuhr and A. Ringwald, New limits on hidden photons from past electron beam dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].

    ADS  Google Scholar 

  68. A1 collaboration, H. Merkel et al., Search for light gauge bosons of the dark sector at the Mainz microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].

    ADS  Google Scholar 

  69. APEX collaboration, S. Abrahamyan et al., Search for a new gauge boson in electron-nucleus fixed-target scattering by the APEX experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].

    ADS  Google Scholar 

  70. S. Andreas, Hidden photons in beam dump experiments and in connection with dark matter, Frascati Phys. Ser. 56 (2012) 23 [arXiv:1212.4520] [INSPIRE].

    Google Scholar 

  71. R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An electron fixed target experiment to search for a new vector boson A decaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].

    ADS  Google Scholar 

  72. M. Freytsis, G. Ovanesyan and J. Thaler, Dark force detection in low energy e-p collisions, JHEP 01 (2010) 111 [arXiv:0909.2862] [INSPIRE].

    ADS  Google Scholar 

  73. Heavy Photon Search collaboration, Heavy Photon Search experiment .

  74. P.H. Adrian, The Heavy Photon Search experiment, arXiv:1301.1103 [INSPIRE].

  75. K.J. Kim and Y.-S. Tsai, Improved Weizsacker-Williams method and its application to lepton and W boson pair production, Phys. Rev. D 8 (1973) 3109 [INSPIRE].

    ADS  Google Scholar 

  76. T. Beranek and M. Vanderhaeghen, Study of the discovery potential for hidden photon emission at future electron scattering fixed target experiments, arXiv:1311.5104 [INSPIRE].

  77. E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].

    ADS  Google Scholar 

  78. Y.-S. Tsai, Axion bremsstrahlung by an electron beam, Phys. Rev. D 34 (1986) 1326 [INSPIRE].

    ADS  Google Scholar 

  79. J.D. Bjorken et al., Search for neutral metastable penetrating particles produced in the SLAC beam dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].

    ADS  Google Scholar 

  80. A. Bross et al., A search for shortlived particles produced in an electron beam dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].

    ADS  Google Scholar 

  81. A. Konaka et al., Search for neutral particles in electron beam dump experiment, Phys. Rev. Lett. 57 (1986) 659 [INSPIRE].

    ADS  Google Scholar 

  82. M. Davier and H. Nguyen Ngoc, An unambiguous search for a light Higgs boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].

    ADS  Google Scholar 

  83. S.N. Gninenko, Search for MeV dark photons in a light-shining-through-walls experiment at CERN, Phys. Rev. D 89 (2014) 075008 [arXiv:1308.6521] [INSPIRE].

    ADS  Google Scholar 

  84. S. Andreas et al., Proposal for an experiment to search for light dark matter at the SPS, arXiv:1312.3309 [INSPIRE].

  85. B.C. Odom, D. Hanneke, B. D’Urso and G. Gabrielse, New measurement of the electron magnetic moment using a one-electron quantum cyclotron, Phys. Rev. Lett. 97 (2006) 030801 [Erratum ibid. 99 (2007) 039902] [INSPIRE].

  86. S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett. B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].

    ADS  Google Scholar 

  87. P. deNiverville, D. McKeen and A. Ritz, Signatures of sub-GeV dark matter beams at neutrino experiments, Phys. Rev. D 86 (2012) 035022 [arXiv:1205.3499] [INSPIRE].

    ADS  Google Scholar 

  88. J. Blümlein and J. Brunner, New exclusion limits on dark gauge forces from proton bremsstrahlung in beam-dump data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].

    ADS  Google Scholar 

  89. J. Blumlein and J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].

    ADS  Google Scholar 

  90. S.N. Gninenko, Stringent limits on the π 0γX, Xe + e decay from neutrino experiments and constraints on new light gauge bosons, Phys. Rev. D 85 (2012) 055027 [arXiv:1112.5438] [INSPIRE].

    ADS  Google Scholar 

  91. H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].

    ADS  Google Scholar 

  92. R. Burman and E. Smith, Parametrization of pion production and reaction cross-sections at LAMPF energies, LA-11502-MS (1989) [INSPIRE].

  93. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., The neutrino flux prediction at MiniBooNE, Phys. Rev. D 79 (2009) 072002 [arXiv:0806.1449] [INSPIRE].

    ADS  Google Scholar 

  94. G. Tel-Zur, Electron pair production in p-Be and p-Au collisions at 450 GeV/c (2014).

  95. M. Bourquin and J.-M. Gaillard, Vector meson and ψ contributions to single lepton spectra, Phys. Lett. B 59 (1975) 191 [INSPIRE].

    ADS  Google Scholar 

  96. M. Bourquin and J.-M. Gaillard, A simple phenomenological description of hadron production, Nucl. Phys. B 114 (1976) 334 [INSPIRE].

    ADS  Google Scholar 

  97. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, arXiv:1310.1921 [INSPIRE].

  98. C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].

    ADS  MATH  Google Scholar 

  99. C. Degrande et al., UFOThe universal FeynRules output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Google Scholar 

  100. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Google Scholar 

  101. CHARM collaboration, F. Bergsma et al., Search for axion like particle production in 400 GeV proton-copper interactions, Phys. Lett. B 157 (1985) 458 [INSPIRE].

    ADS  Google Scholar 

  102. CHARM collaboration, F. Bergsma et al., A search for decays of heavy neutrinos in the mass range 0.5 GeV to 2.8 GeV, Phys. Lett. B 166 (1986) 473 [INSPIRE].

    ADS  Google Scholar 

  103. MINOS Collaboration, I. Ambats et al., The MINOS detectors technical design report, NUMI-L-337 (1998) [INSPIRE].

  104. MINOS collaboration, P. Adamson et al., Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].

    ADS  Google Scholar 

  105. J. Blumlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys. C 51 (1991) 341 [INSPIRE].

    Google Scholar 

  106. J. Blumlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e + e and μ + μ pair production in a proton-iron beam dump experiment, Int. J. Mod. Phys. A 7 (1992) 3835[INSPIRE].

    ADS  Google Scholar 

  107. K. Abe et al., Measurements of the T2K neutrino beam properties using the INGRID on-axis near detector, Nucl. Instrum. Meth. A 694 (2012) 211 [arXiv:1111.3119] [INSPIRE].

    ADS  Google Scholar 

  108. LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].

    ADS  Google Scholar 

  109. LSND collaboration, L.B. Auerbach et al., Measurement of electron-neutrino-electron elastic scattering, Phys. Rev. D 63 (2001) 112001 [hep-ex/0101039] [INSPIRE].

    ADS  Google Scholar 

  110. S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel et al., Pion production in heavy ion collisions at SIS energies, Z. Phys. A 356 (1997) 421 [nucl-th/9609009] [INSPIRE].

    ADS  Google Scholar 

  111. V. Flaminio, W. Moorhead, D. Morrison and N. Rivoire, Compilation of cross-sections. 3. p and anti-p induced reactions, CERN-HERA-73-1 (1973) [INSPIRE].

  112. T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].

    ADS  MATH  Google Scholar 

  113. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    ADS  Google Scholar 

  114. M. Aguilar-Benitez et al., Inclusive particle production in 400 GeV/c pp interactions, Z. Phys. C 50 (1991) 405.

    Google Scholar 

  115. G. Agakishiev et al., Neutral meson production in p Be and p Au collisions at 450 GeV beam energy, Eur. Phys. J. C 4 (1998) 249 [INSPIRE].

    ADS  Google Scholar 

  116. NA61/SHINE collaboration, N. Abgrall et al., Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c, Phys. Rev. C 84 (2011) 034604 [arXiv:1102.0983] [INSPIRE].

    ADS  Google Scholar 

  117. MINOS collaboration, P. Adamson et al., Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].

    ADS  Google Scholar 

  118. French-Soviet collaboration, M. Boratav et al., Gamma production and multiplicity correlations between neutral and charged pions in pp interactions at 69 GeV/c, Nucl. Phys. B 111 (1976) 529 [INSPIRE].

    ADS  Google Scholar 

  119. France-Soviet Union collaboration, H. Blumenfeld et al., Photon production in 69 GeV pp interactions, Phys. Lett. B 45 (1973) 525 [INSPIRE].

    ADS  Google Scholar 

  120. T2K collaboration, K. Abe et al., The T2K experiment, Nucl. Instrum. Meth. A 659 (2011) 106 [arXiv:1106.1238] [INSPIRE].

    ADS  Google Scholar 

  121. NOMAD collaboration, P. Astier et al., Search for heavy neutrinos mixing with τ neutrinos, Phys. Lett. B 506 (2001) 27 [hep-ex/0101041] [INSPIRE].

    ADS  Google Scholar 

  122. G. Bernardi et al., Search for neutrino decay, Phys. Lett. B 166 (1986) 479 [INSPIRE].

    ADS  Google Scholar 

  123. G. Bernardi et al., Further limits on heavy neutrino couplings, Phys. Lett. B 203 (1988) 332 [INSPIRE].

    ADS  Google Scholar 

  124. MiniBooNE collaboration, A.A. Aguilar-Arevalo et al., The MiniBooNE detector, Nucl. Instrum. Meth. A 599 (2009) 28 [arXiv:0806.4201] [INSPIRE].

    ADS  Google Scholar 

  125. S. Assylbekov et al., The T2K ND280 off-axis Pi-Zero detector, Nucl. Instrum. Meth. A 686 (2012) 48 [arXiv:1111.5030] [INSPIRE].

    ADS  Google Scholar 

  126. A.S. Kronfeld et al., Project X: physics opportunities, arXiv:1306.5009 [INSPIRE].

  127. S. Holmes, S. Nagaitsev and R. Tschirhart, Project X: a flexible high power proton facility, arXiv:1305.3809 [INSPIRE].

  128. S.J. Brodsky, F. Fleuret, C. Hadjidakis and J.P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams, Phys. Rept. 522 (2013) 239 [arXiv:1202.6585] [INSPIRE].

    ADS  Google Scholar 

  129. J.P. Lansberg et al., A Fixed-Target ExpeRiment at the LHC (AFTER@LHC): luminosities, target polarisation and a selection of physics studies, PoS(QNP2012)049 [arXiv:1207.3507] [INSPIRE].

  130. M.J. Strassler, Possible effects of a hidden valley on supersymmetric phenomenology, hep-ph/0607160 [INSPIRE].

  131. M. Baumgart, C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Non-abelian dark sectors and their collider signatures, JHEP 04 (2009) 014 [arXiv:0901.0283] [INSPIRE].

    ADS  Google Scholar 

  132. C. Cheung, J.T. Ruderman, L.-T. Wang and I. Yavin, Lepton jets in (supersymmetric) electroweak processes, JHEP 04 (2010) 116 [arXiv:0909.0290] [INSPIRE].

    ADS  Google Scholar 

  133. T. Beranek, H. Merkel and M. Vanderhaeghen, Theoretical framework to analyze searches for hidden light gauge bosons in electron scattering fixed target experiments, Phys. Rev. D 88 (2013) 015032 [arXiv:1303.2540] [INSPIRE].

    ADS  Google Scholar 

  134. J.R. Andersen, M. Rauch and M. Spannowsky, Dark sector spectroscopy at the ILC, arXiv:1308.4588 [INSPIRE].

  135. A. Kumar, D.E. Morrissey and A. Spray, Kinetically-enhanced anomaly mediation, JHEP 12 (2011) 013 [arXiv:1109.1565] [INSPIRE].

    ADS  Google Scholar 

  136. J.F. Donoghue, J. Gasser and H. Leutwyler, The decay of a light Higgs boson, Nucl. Phys. B 343 (1990) 341 [INSPIRE].

    ADS  Google Scholar 

  137. F. Bezrukov and D. Gorbunov, Light inflaton hunters guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].

    ADS  Google Scholar 

  138. F. Bezrukov and D. Gorbunov, Light inflaton after LHC8 and WMAP9 results, JHEP 07 (2013) 140 [arXiv:1303.4395] [INSPIRE].

    ADS  Google Scholar 

  139. Y.-S. Tsai, Pair production and bremsstrahlung of charged leptons, Rev. Mod. Phys. 46 (1974) 815 [Erratum ibid. 49 (1977) 521-423] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Spray.

Additional information

ArXiv ePrint: 1402.4817

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morrissey, D.E., Spray, A.P. New limits on light hidden sectors from fixed-target experiments. J. High Energ. Phys. 2014, 83 (2014). https://doi.org/10.1007/JHEP06(2014)083

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2014)083

Keywords

  • Beyond Standard Model
  • Supersymmetric Standard Model