Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Three-dimensional (higher-spin) gravities with extended Schrödinger and l-conformal Galilean symmetries

26 July 2019

Dmitry Chernyavsky & Dmitri Sorokin

Carrollian and Galilean conformal higher-spin algebras in any dimensions

17 February 2022

Andrea Campoleoni & Simon Pekar

Conformal wavefunctions for graviton amplitudes

26 January 2022

Chang Liu & David A. Lowe

Topologically massive higher spin gauge theories

25 October 2018

Sergei M. Kuzenko & Michael Ponds

One-dimensional Quantum Gravity and the Schwarzian theory

21 March 2022

Dionysios Anninos, Diego M. Hofman & Stathis Vitouladitis

Holographic symmetry algebras for gauge theory and gravity

19 November 2021

A. Guevara, E. Himwich, … A. Strominger

Generalizing the $$\mathfrak {bms}_{3}$$ bms 3 and 2D-conformal algebras by expanding the Virasoro algebra

26 March 2018

Ricardo Caroca, Patrick Concha, … Patricio Salgado-Rebolledo

Higher dualisations of linearised gravity and the A 1 + + + $$ {A}_1^{+++} $$ algebra

27 December 2022

Nicolas Boulanger, Paul P. Cook, … Peter West

Bosonic higher spin gravity in any dimension with dynamical two-form

01 March 2019

Cesar Arias, Roberto Bonezzi & Per Sundell

Download PDF
  • Open Access
  • Published: 11 June 2014

Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry

  • Hamid Afshar1,
  • Thomas Creutzig2,
  • Daniel Grumiller3,
  • Yasuaki Hikida4 &
  • …
  • Peter B. Rønne5 

Journal of High Energy Physics volume 2014, Article number: 63 (2014) Cite this article

  • 316 Accesses

  • 7 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov \( W_n^{(2) } \)-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n = 2 and n = 4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k + n = (n + 1)/(n − 1). At these points, the \( W_n^{(2) } \)-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n = 4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. M. Henneaux and S.-J. Rey, Nonlinear W ∞ as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  5. M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Gutperle, E. Hijano and J. Samani, Lifshitz black holes in higher spin gravity, JHEP 04 (2014) 020 [arXiv:1310.0837] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Gary, D. Grumiller, S. Prohazka and S.J. Rey, Higher spin Lifshitz holography, in preparation.

  12. H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].

    Article  ADS  Google Scholar 

  13. H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. A.M. Polyakov, Gauge transformations and diffeomorphisms, Int. J. Mod. Phys. A 5 (1990) 833 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Bershadsky, Conformal field theories via hamiltonian reduction, Commun. Math. Phys. 139 (1991) 71 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A. Castro, E. Hijano and A. Lepage-Jutier, Unitarity bounds in AdS 3 higher spin gravity, JHEP 06 (2012) 001 [arXiv:1202.4467] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Feigin and A. Semikhatov, \( W_n^{(2) } \) algebras, Nucl. Phys. B 698 (2004) 409 [math/0401164] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings, Class. Quant. Grav. 30 (2013) 104004 [arXiv:1211.4454] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. V.G. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185 (2004) 400.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Creutzig, D. Ridout and S. Wood, Coset constructions of logarithmic (1, p) models, Lett. Math. Phys. 104 (2014) 553 [arXiv:1305.2665] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Creutzig, P. Gao and A.R. Linshaw, A commutant realization of W (2) n at critical level, arXiv:1109.4065 [INSPIRE].

  22. T. Creutzig, P. Gao and A.R. Linshaw, Fermionic coset, critical level W (2)4 -algebra and higher spins, JHEP 04 (2012) 031 [arXiv:1111.6603] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. V.G. Kac and M. Wakimoto, On rationality of W-algebras, Transform. Groups 13 (2008) 671.

    Article  MATH  MathSciNet  Google Scholar 

  24. T. Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Comm. Math. Phys. 323 (2013) 627 [arXiv:1005.0185].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. S.J. Rey, Comments on quantum higher spin gravity in 2 + 1 dimensions, talk given at the 2nd Solvay workshop on “Higher Spin Gauge Theories”, February 5-8, Brussels (2013).

  26. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, Germany (1997).

    Book  MATH  Google Scholar 

  27. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. J. de Boer and T. Tjin, The relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  29. T. Creutzig, Y. Hikida and P.B. Rønne, Three point functions in higher spin AdS 3 supergravity, JHEP 01 (2013) 171 [arXiv:1211.2237] [INSPIRE].

    Article  ADS  Google Scholar 

  30. T. Creutzig, Y. Hikida and P.B. Rønne, Extended higher spin holography and Grassmannian models, JHEP 11 (2013) 038 [arXiv:1306.0466] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].

    Article  ADS  Google Scholar 

  33. H. Moradi and K. Zoubos, Three-point functions in N = 2 higher-spin holography, JHEP 04 (2013) 018 [arXiv:1211.2239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Creutzig and D. Ridout, W-algebras extending affine \( \widehat{g}l\left( {1|1} \right) \), arXiv:1111.5049 [INSPIRE].

  35. T. Creutzig and D. Ridout, Relating the archetypes of logarithmic conformal field theory, Nucl. Phys. B 872 (2013) 348 [arXiv:1107.2135] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  36. C. Alfes and T. Creutzig, The Mock modular data of a family of superalgebras, Proc. Am. Math. Soc. (2012) [arXiv:1205.1518] [INSPIRE].

  37. Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Creutzig, Y. Hikida and P.B. Rønne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].

    Article  ADS  Google Scholar 

  39. C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS 3, JHEP 09 (2013) 071 [arXiv:1203.1939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Creutzig, Y. Hikida and P.B. Rønne, \( \mathcal{N} \) = 1 supersymmetric higher spin holography on AdS 3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Beccaria, C. Candu, M.R. Gaberdiel and M. Groher, N = 1 extension of minimal model holography, arXiv:1305.1048 [INSPIRE].

  42. M.R. Gaberdiel and R. Gopakumar, Large-N = 4 holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

    Hamid Afshar

  2. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada

    Thomas Creutzig

  3. Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, A-1040, Vienna, Austria

    Daniel Grumiller

  4. Department of Physics, Rikkyo University, Toshima, Tokyo, 223-8521, Japan

    Yasuaki Hikida

  5. University of Luxembourg, Mathematics Research Unit, FSTC, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg-Kirchberg, Luxembourg

    Peter B. Rønne

Authors
  1. Hamid Afshar
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Thomas Creutzig
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Daniel Grumiller
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Yasuaki Hikida
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Peter B. Rønne
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Thomas Creutzig.

Additional information

ArXiv ePrint: 1404.0010

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afshar, H., Creutzig, T., Grumiller, D. et al. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry. J. High Energ. Phys. 2014, 63 (2014). https://doi.org/10.1007/JHEP06(2014)063

Download citation

  • Received: 08 April 2014

  • Revised: 12 May 2014

  • Accepted: 28 May 2014

  • Published: 11 June 2014

  • DOI: https://doi.org/10.1007/JHEP06(2014)063

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higher Spin Symmetry
  • Conformal and W Symmetry
  • AdS-CFT Correspondence
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.