Abstract
We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov \( W_n^{(2) } \)-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n = 2 and n = 4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k + n = (n + 1)/(n − 1). At these points, the \( W_n^{(2) } \)-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n = 4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.
References
J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].
M. Henneaux and S.-J. Rey, Nonlinear W ∞ as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].
A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, Minimal model holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].
M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].
M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].
M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].
H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].
M. Gutperle, E. Hijano and J. Samani, Lifshitz black holes in higher spin gravity, JHEP 04 (2014) 020 [arXiv:1310.0837] [INSPIRE].
M. Gary, D. Grumiller, S. Prohazka and S.J. Rey, Higher spin Lifshitz holography, in preparation.
H. Afshar, A. Bagchi, R. Fareghbal, D. Grumiller and J. Rosseel, Spin-3 gravity in three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 121603 [arXiv:1307.4768] [INSPIRE].
H.A. Gonzalez, J. Matulich, M. Pino and R. Troncoso, Asymptotically flat spacetimes in three-dimensional higher spin gravity, JHEP 09 (2013) 016 [arXiv:1307.5651] [INSPIRE].
A.M. Polyakov, Gauge transformations and diffeomorphisms, Int. J. Mod. Phys. A 5 (1990) 833 [INSPIRE].
M. Bershadsky, Conformal field theories via hamiltonian reduction, Commun. Math. Phys. 139 (1991) 71 [INSPIRE].
A. Castro, E. Hijano and A. Lepage-Jutier, Unitarity bounds in AdS 3 higher spin gravity, JHEP 06 (2012) 001 [arXiv:1202.4467] [INSPIRE].
B. Feigin and A. Semikhatov, \( W_n^{(2) } \) algebras, Nucl. Phys. B 698 (2004) 409 [math/0401164] [INSPIRE].
H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Semi-classical unitarity in 3-dimensional higher-spin gravity for non-principal embeddings, Class. Quant. Grav. 30 (2013) 104004 [arXiv:1211.4454] [INSPIRE].
V.G. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math. 185 (2004) 400.
T. Creutzig, D. Ridout and S. Wood, Coset constructions of logarithmic (1, p) models, Lett. Math. Phys. 104 (2014) 553 [arXiv:1305.2665] [INSPIRE].
T. Creutzig, P. Gao and A.R. Linshaw, A commutant realization of W (2) n at critical level, arXiv:1109.4065 [INSPIRE].
T. Creutzig, P. Gao and A.R. Linshaw, Fermionic coset, critical level W (2)4 -algebra and higher spins, JHEP 04 (2012) 031 [arXiv:1111.6603] [INSPIRE].
V.G. Kac and M. Wakimoto, On rationality of W-algebras, Transform. Groups 13 (2008) 671.
T. Arakawa, Rationality of Bershadsky-Polyakov vertex algebras, Comm. Math. Phys. 323 (2013) 627 [arXiv:1005.0185].
S.J. Rey, Comments on quantum higher spin gravity in 2 + 1 dimensions, talk given at the 2nd Solvay workshop on “Higher Spin Gauge Theories”, February 5-8, Brussels (2013).
P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer, Germany (1997).
A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].
J. de Boer and T. Tjin, The relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].
T. Creutzig, Y. Hikida and P.B. Rønne, Three point functions in higher spin AdS 3 supergravity, JHEP 01 (2013) 171 [arXiv:1211.2237] [INSPIRE].
T. Creutzig, Y. Hikida and P.B. Rønne, Extended higher spin holography and Grassmannian models, JHEP 11 (2013) 038 [arXiv:1306.0466] [INSPIRE].
M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].
C.-M. Chang and X. Yin, Higher spin gravity with matter in AdS 3 and its CFT dual, JHEP 10 (2012) 024 [arXiv:1106.2580] [INSPIRE].
H. Moradi and K. Zoubos, Three-point functions in N = 2 higher-spin holography, JHEP 04 (2013) 018 [arXiv:1211.2239] [INSPIRE].
T. Creutzig and D. Ridout, W-algebras extending affine \( \widehat{g}l\left( {1|1} \right) \), arXiv:1111.5049 [INSPIRE].
T. Creutzig and D. Ridout, Relating the archetypes of logarithmic conformal field theory, Nucl. Phys. B 872 (2013) 348 [arXiv:1107.2135] [INSPIRE].
C. Alfes and T. Creutzig, The Mock modular data of a family of superalgebras, Proc. Am. Math. Soc. (2012) [arXiv:1205.1518] [INSPIRE].
Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].
T. Creutzig, Y. Hikida and P.B. Rønne, Higher spin AdS 3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].
C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS 3, JHEP 09 (2013) 071 [arXiv:1203.1939] [INSPIRE].
T. Creutzig, Y. Hikida and P.B. Rønne, \( \mathcal{N} \) = 1 supersymmetric higher spin holography on AdS 3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].
M. Beccaria, C. Candu, M.R. Gaberdiel and M. Groher, N = 1 extension of minimal model holography, arXiv:1305.1048 [INSPIRE].
M.R. Gaberdiel and R. Gopakumar, Large-N = 4 holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1404.0010
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Afshar, H., Creutzig, T., Grumiller, D. et al. Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry. J. High Energ. Phys. 2014, 63 (2014). https://doi.org/10.1007/JHEP06(2014)063
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2014)063
Keywords
- Higher Spin Symmetry
- Conformal and W Symmetry
- AdS-CFT Correspondence