Skip to main content

Advertisement

SpringerLink
The effective action in 4-dim CDT. The transfer matrix approach
Download PDF
Download PDF
  • Open Access
  • Published: 06 June 2014

The effective action in 4-dim CDT. The transfer matrix approach

  • J. Ambjørn1,2,
  • J. Gizbert-Studnicki3,
  • A. Görlich1,3 &
  • …
  • J. Jurkiewicz3 

Journal of High Energy Physics volume 2014, Article number: 34 (2014) Cite this article

  • 342 Accesses

  • 27 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We measure the effective action in all three phases of 4-dimensional Causal Dynamical Triangulations (CDT) using the transfer matrix method. The transfer matrix is parametrized by the total 3-volume of the CDT universe at a given (discrete) time. We present a simple effective model based on the transfer matrix measured in the de Sitter phase. It allows us to reconstruct the results of full CDT in this phase. We argue that the transfer matrix method is valid not only inside the de Sitter phase (‘C’) but also in the other two phases. A parametrization of the measured transfer matrix/effective action in the ‘A’ and ‘B’ phases is proposed and the relation to phase transitions is explained. We discover a potentially new ‘bifurcation’ phase separating the de Sitter phase (‘C’) and the ‘collapsed’ phase (‘B’).

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].

    Article  MathSciNet  Google Scholar 

  2. F. David, Planar diagrams, two-dimensional lattice gravity and surface models, Nucl. Phys. B 257 (1985) 45 [INSPIRE].

    Article  ADS  Google Scholar 

  3. V.A. Kazakov, A.A. Migdal and I.K. Kostov, Critical properties of randomly triangulated planar random surfaces, Phys. Lett. B 157 (1985) 295 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Ambjørn, B. Durhuus and J. Fröhlich, Diseases of triangulated random surface models and possible cures, Nucl. Phys. B 257 (1985) 433 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J. Ambjorn, B. Durhuus, J. Frohlich and P. Orland, The appearance of critical dimensions in regulated string theories, Nucl. Phys. B 270 (1986) 45.

    MathSciNet  Google Scholar 

  6. D.V. Boulatov, V.A. Kazakov, I.K. Kostov and A.A. Migdal, Analytical and numerical study of the model of dynamically triangulated random surfaces, Nucl. Phys. B 275 (1986) 641 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. F. David, Conformal field theories coupled to 2D gravity in the conformal gauge, Mod. Phys. Lett. A 3 (1988) 1651 [INSPIRE].

    Article  ADS  Google Scholar 

  9. J. Distler and H. Kawai, Conformal field theory and 2D quantum gravity or who’s afraid of Joseph Liouville?, Nucl. Phys. B 321 (1989) 509 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Ambjørn and K.N. Anagnostopoulos, Quantum geometry of 2D gravity coupled to unitary matter, Nucl. Phys. B 497 (1997) 445 [hep-lat/9701006] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Ambjørn and S. Varsted, Entropy estimate in three-dimensional simplicial quantum gravity, Phys. Lett. B 266 (1991) 285 [INSPIRE].

    Article  ADS  Google Scholar 

  12. M.E. Agishtein and A.A. Migdal, Three-dimensional quantum gravity as dynamical triangulation, Mod. Phys. Lett. A 6 (1991) 1863 [Erratum ibid. A 6 (1991) 2555] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. D.V. Boulatov and A. Krzywicki, On the phase diagram of three-dimensional simplicial quantum gravity, Mod. Phys. Lett. A 6 (1991) 3005 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. J. Ambjørn, D.V. Boulatov, A. Krzywicki and S. Varsted, The vacuum in three-dimensional simplicial quantum gravity, Phys. Lett. B 276 (1992) 432 [INSPIRE].

    Article  ADS  Google Scholar 

  15. J. Ambjørn and S. Varsted, Three-dimensional simplicial quantum gravity, Nucl. Phys. B 373 (1992) 557 [INSPIRE].

    Article  ADS  Google Scholar 

  16. J. Ambjørn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett. B 278 (1992) 42 [INSPIRE].

    Article  ADS  Google Scholar 

  17. M.E. Agishtein and A.A. Migdal, Simulations of four-dimensional simplicial quantum gravity, Mod. Phys. Lett. A 7 (1992) 1039 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Bilke et al., 4 − D simplicial quantum gravity interacting with gauge matter fields, Phys. Lett. B 418 (1998) 266 [hep-lat/9710077] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Bilke et al., 4 − D simplicial quantum gravity: matter fields and the corresponding effective action, Phys. Lett. B 432 (1998) 279 [hep-lat/9804011] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Ambjørn, K.N. Anagnostopoulos and J. Jurkiewicz, Abelian gauge fields coupled to simplicial quantum gravity, JHEP 08 (1999) 016 [hep-lat/9907027] [INSPIRE].

    Article  ADS  Google Scholar 

  21. S. Horata, H.S. Egawa, N. Tsuda and T. Yukawa, Phase structure of four-dimensional simplicial quantum gravity with a U(1) gauge field, Prog. Theor. Phys. 106 (2001) 1037 [hep-lat/0004021] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Focusing on the fixed point of 4D simplicial gravity, Nucl. Phys. B 472 (1996) 293 [hep-lat/9601024] [INSPIRE].

    Article  ADS  Google Scholar 

  23. B.V. de Bakker, Further evidence that the transition of 4D dynamical triangulation is first order, Phys. Lett. B 389 (1996) 238 [hep-lat/9603024] [INSPIRE].

    Article  ADS  Google Scholar 

  24. S. Catterall, R. Renken and J.B. Kogut, Singular structure in 4D simplicial gravity, Phys. Lett. B 416 (1998) 274 [hep-lat/9709007] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536 (1998) 407 [hep-th/9805108] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Ambjørn, J. Jurkiewicz and R. Loll, A nonperturbative lorentzian path integral for gravity, Phys. Rev. Lett. 85 (2000) 924 [hep-th/0002050] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. J. Ambjørn, J. Jurkiewicz and R. Loll, Nonperturbative 3D lorentzian quantum gravity, Phys. Rev. D 64 (2001) 044011 [hep-th/0011276] [INSPIRE].

    ADS  Google Scholar 

  28. J. Ambjørn, J. Jurkiewicz and R. Loll, Dynamically triangulating lorentzian quantum gravity, Nucl. Phys. B 610 (2001) 347 [hep-th/0105267] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative quantum gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Ambjørn, J. Jurkiewicz and R. Loll, Quantum gravity as sum over spacetimes, Lect. Notes Phys. 807 (2010) 59 [arXiv:0906.3947] [INSPIRE].

    Article  ADS  Google Scholar 

  31. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, CDT — An entropic theory of quantum gravity, arXiv:1007.2560 [INSPIRE].

  32. J. Ambjørn, J. Jurkiewicz and R. Loll, The Universe from scratch, Contemp. Phys. 47 (2006) 103 [hep-th/0509010] [INSPIRE].

    Article  ADS  Google Scholar 

  33. R. Loll, The emergence of spacetime or quantum gravity on your desktop, Class. Quant. Grav. 25 (2008) 114006 [arXiv:0711.0273] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].

    ADS  Google Scholar 

  35. J. Ambjørn, A. Görlich, S. Jordan, J. Jurkiewicz and R. Loll, CDT meets Hořava-Lifshitz gravity, Phys. Lett. B 690 (2010) 413 [arXiv:1002.3298] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Ambjørn, J. Jurkiewicz and R. Loll, Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett. 93 (2004) 131301 [hep-th/0404156] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. J. Ambjørn, J. Jurkiewicz and R. Loll, Semiclassical universe from first principles, Phys. Lett. B 607 (2005) 205 [hep-th/0411152] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].

    ADS  Google Scholar 

  39. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485] [INSPIRE].

    Article  ADS  Google Scholar 

  40. J. Ambjørn, J. Jurkiewicz and R. Loll, The self-organized de Sitter universe, Int. J. Mod. Phys. D 17 (2009) 2515 [arXiv:0806.0397] [INSPIRE].

    ADS  Google Scholar 

  41. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Geometry of the quantum universe, Phys. Lett. B 690 (2010) 420 [arXiv:1001.4581] [INSPIRE].

    Article  ADS  Google Scholar 

  42. J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].

    ADS  Google Scholar 

  43. J. Ambjørn, et al., The semiclassical limit of causal dynamical triangulations, Nucl. Phys. B 849 (2011) 144 [arXiv:1102.3929] [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The transfer matrix in four-dimensional CDT, JHEP 09 (2012) 017 [arXiv:1205.3791] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, Second- and first-order phase transitions in CDT, Phys. Rev. D 85 (2012) 124044 [arXiv:1205.1229] [INSPIRE].

    ADS  Google Scholar 

  47. L. Bogacz, Z. Burda and B. Waclaw, Quantum widening of CDT universe, Phys. Rev. D 86 (2012) 104015 [arXiv:1204.1356] [INSPIRE].

    ADS  Google Scholar 

  48. J. Mielczarek, Asymptotic silence in loop quantum cosmology, AIP Conf. Proc. 1514 (2012) 81 [arXiv:1212.3527] [INSPIRE].

    ADS  Google Scholar 

  49. P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].

    ADS  Google Scholar 

  50. P. Hořava and C.M. Melby-Thompson, General covariance in quantum gravity at a Lifshitz point, Phys. Rev. D 82 (2010) 064027 [arXiv:1007.2410] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark

    J. Ambjørn & A. Görlich

  2. IMAPP, Radboud University, Niemegen, The Netherlands

    J. Ambjørn

  3. Institute of Physics, Jagellonian University, Reymonta 4, PL 30-059, Krakow, Poland

    J. Gizbert-Studnicki, A. Görlich & J. Jurkiewicz

Authors
  1. J. Ambjørn
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J. Gizbert-Studnicki
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. A. Görlich
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. J. Jurkiewicz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J. Gizbert-Studnicki.

Additional information

ArXiv ePrint: 1403.5940

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ambjørn, J., Gizbert-Studnicki, J., Görlich, A. et al. The effective action in 4-dim CDT. The transfer matrix approach. J. High Energ. Phys. 2014, 34 (2014). https://doi.org/10.1007/JHEP06(2014)034

Download citation

  • Received: 25 March 2014

  • Revised: 16 May 2014

  • Accepted: 16 May 2014

  • Published: 06 June 2014

  • DOI: https://doi.org/10.1007/JHEP06(2014)034

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Models of Quantum Gravity
  • Random Systems
  • Lattice Models of Gravity
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.