Skip to main content
Log in

θ 13 and charged lepton flavor violation in “warped” A4 models

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We recently proposed a spontaneous A4 flavor symmetry breaking scheme implemented in a warped extra dimensional setup to explain the observed pattern of quark and lepton masses and mixings. The main features of this choice are the explanation of fermion mass hierarchies by wave function overlaps, the emergence of tribimaximal (TBM) neutrino mixing and zero quark mixing at the leading order and the absence of tree-level gauge mediated flavor violation. Quark mixing and deviations from TBM neutrino mixing are induced by the presence of bulk A4 flavons, which allow for “cross-brane” interactions and a “cross-talk” between the quark and neutrino sectors.

In this work, we study the constraints associated with the recent measurements of θ 13 ≈ 9° by RENO and Daya Bay, forcing every model that predicts TBM neutrino mixing to account for the significant deviation of θ 13 from 0, while keeping the values of θ 12 and θ 23 close to their central experimental values. We then proceed to study in detail the RS-A4 contributions to μe, 3e, generated at the tree level by virtue of anomalous Z couplings. These couplings arise from gauge and fermionic KK mixing effects after electroweak symmetry breaking. Since the experimental sensitivity for BR(μe, 3e) is expected to increase by five orders of magnitude within the next decade, it is shown that the RS-A4 lepton sector can be significantly constrained. Finally, we show that when “cross-brane” interactions are turned off, the Z couplings are protected against all anomalous contributions and a strong correlation between θ 13 and the deviation from maximality of θ 23 is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Kadosh and E. Pallante, An A 4 flavor model for quarks and leptons in warped geometry, JHEP 08 (2010) 115 [arXiv:1004.0321] [INSPIRE].

    Article  ADS  Google Scholar 

  2. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [INSPIRE].

    ADS  Google Scholar 

  3. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A 4 and the modular symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. C. Csáki, C. Delaunay, C. Grojean and Y. Grossman, A model of lepton masses from a warped extra dimension, JHEP 10 (2008) 055 [arXiv:0806.0356] [INSPIRE].

    Article  ADS  Google Scholar 

  6. F. del Aguila, A. Carmona and J. Santiago, Neutrino masses from an A 4 symmetry in holographic composite Higgs models, JHEP 08 (2010) 127 [arXiv:1001.5151] [INSPIRE].

    Article  ADS  Google Scholar 

  7. X.-G. He, Y.-Y. Keum and R.R. Volkas, A 4 flavor symmetry breaking scheme for understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 [hep-ph/0601001] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Agashe, A. Delgado, M.J. May and R. Sundrum, RS1, custodial isospin and precision tests, JHEP 08 (2003) 050 [hep-ph/0308036] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].

    ADS  Google Scholar 

  10. A. Kadosh and E. Pallante, CP violation and FCNC in a warped A 4 flavor model, JHEP 06 (2011) 121 [arXiv:1101.5420] [INSPIRE].

    Article  ADS  Google Scholar 

  11. K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].

    ADS  Google Scholar 

  12. O. Gedalia, G. Isidori and G. Perez, Combining direct & indirect kaon CP-violation to constrain the warped KK scale, Phys. Lett. B 682 (2009) 200 [arXiv:0905.3264] [INSPIRE].

    ADS  Google Scholar 

  13. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  14. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  15. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  16. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  17. MINOS collaboration, P. Adamson et al., Improved search for muon-neutrino to electron-neutrino oscillations in MINOS, Phys. Rev. Lett. 107 (2011) 181802 [arXiv:1108.0015] [INSPIRE].

    Article  ADS  Google Scholar 

  18. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  19. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  20. SINDRUM collaboration, U. Bellgardt et al., Search for the decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  21. SINDRUM II collaboration, P. Wintz et al., Test of LFC in μe conversion on titanium, (1996) [INSPIRE].

  22. DEEMEE collaboration, A proposal for a muon-electron conversion experiment in J-PARC, http://deeme.hep.sci.osaka-u.ac.jp/, (2012).

  23. COMET collaboration, Y. Kuno, Experimental proposal for phase-I of the COMET experiment at J-PARC, http://j-parc.jp/researcher/Hadron/en/pac 1207/pdf/E21 2012–10.pdf, (2013).

  24. PRIME/PRISM collaboration, M. Aoki et al., Experimental proposal for phase-I of the COMET experiment at J-PARC, http://j-parc.jp/researcher/Hadron/en/pac 0606/pdf/p20-Kuno.pdf, (2013).

  25. MuSIC collaboration, Y. Kuno, A proposal for a muon-electron conversion experiment in RCNP Osaka, http://nufact09.iit.edu/wg4/wg4 yoshida-music.pdf.

  26. Mu2e collaboration, A proposal for a muon-electron conversion experiment in Fermilab, http://mu2e.fnal.gov/public/index.shtml, (2012).

  27. Mu2e collaboration, A proposal for a muon-electron conversion experiment in the project X proton accelerator at Fermilab, http://projectx.fnal.gov/, (2012).

  28. Mu3e collaboration, A search for the forbidden decay μe + e + e , http://www.psi.ch/mu3e/, (2012).

  29. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  30. W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].

    Article  ADS  Google Scholar 

  31. G. Altarelli, F. Feruglio, L. Merlo and E. Stamou, Discrete flavour groups, θ 13 and lepton flavour violation, JHEP 08 (2012) 021 [arXiv:1205.4670] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M. Hirsch et al., Proceedings of the first workshop on flavor symmetries and consequences in accelerators and cosmology (FLASY2011), arXiv:1201.5525 [INSPIRE].

  33. I. de Medeiros Varzielas et al., Proceedings of the 2nd workshop on flavor symmetries and consequences in accelerators and cosmology (FLASY12), arXiv:1210.6239 [INSPIRE].

  34. M.-C. Chen, J. Huang, J.-M. O’Bryan, A.M. Wijangco and F. Yu, Compatibility of θ 13 and the type I seesaw model with A 4 symmetry, JHEP 02 (2013) 021 [arXiv:1210.6982] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Csáki, J. Erlich and J. Terning, The effective Lagrangian in the Randall-Sundrum model and electroweak physics, Phys. Rev. D 66 (2002) 064021 [hep-ph/0203034] [INSPIRE].

    ADS  Google Scholar 

  36. A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on standard model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [INSPIRE].

    Article  ADS  Google Scholar 

  37. W.-F. Chang and J.N. Ng, Lepton flavor violation in extra dimension models, Phys. Rev. D 71 (2005) 053003 [hep-ph/0501161] [INSPIRE].

    ADS  Google Scholar 

  38. G. Feinberg, P. Kabir and S. Weinberg, Transformation of muons into electrons, Phys. Rev. Lett. 3 (1959) 527 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e +γ decay, arXiv:1303.0754 [INSPIRE].

  40. G. Altarelli, F. Feruglio, I. Masina and L. Merlo, Repressing anarchy in neutrino mass textures, JHEP 11 (2012) 139 [arXiv:1207.0587] [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Ishimori and E. Ma, New simple A 4 neutrino model for nonzero θ 13 and large δCP , Phys. Rev. D 86 (2012) 045030 [arXiv:1205.0075] [INSPIRE].

    ADS  Google Scholar 

  42. Y. Lin, Tri-bimaximal neutrino mixing from A 4 and θ 13θ C , Nucl. Phys. B 824 (2010) 95 [arXiv:0905.3534] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihay Kadosh.

Additional information

ArXiv ePrint: 1303.2645

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadosh, A. θ 13 and charged lepton flavor violation in “warped” A4 models. J. High Energ. Phys. 2013, 114 (2013). https://doi.org/10.1007/JHEP06(2013)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)114

Keywords

Navigation