Skip to main content
Log in

The anatomy of neutral scalars with FCNCs in the flavour precision era

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In many extensions of the Standard Model (SM) flavour changing neutral current (FCNC) processes can be mediated by tree-level heavy neutral scalars and/or pseudo-scalars H 0(A 0). This generally introduces new sources of flavour violation and CP violation as well as left-handed (LH) and right-handed (RH) scalar (1 ∓ γ 5) currents. These new physics (NP) contributions imply a pattern of deviations from SM expectations for FCNC processes that depends only on the couplings of H 0(A 0) to fermions and on their masses. In situations in which a single H 0 or A 0 dominates NP contributions stringent correlations between ΔF = 2 and ΔF = 1 observables exist. Anticipating the Flavour Precision Era (FPE) ahead of us we illustrate this by searching for allowed oases in the landscape of a given model assuming significantly smaller uncertainties in CKM and hadronic parameters than presently available. To this end we analyze ΔF = 2 observables in \( B_{s,d}^0-\overline{B}_{s,d}^0 \) and \( {K^0}-{{\overline{K}}^0} \) systems and rare B and K decays with charged leptons in the final state including both left-handed and right-handed scalar couplings of H 0 and A 0 to quarks in various combinations. We identify a number of correlations between various flavour observables that could test and distinguish these different scenarios. The prominent role of the decays B s,d μ + μ in these studies is emphasized. Imposing the existing flavour constraints, a rich pattern of deviations from the SM expectations in rare B s,d decays emerges provided M H  ≤ 1 TeV. NP effects in rare K decays, except for K L μ + μ , turn out to be very small. In K L μ + μ they can be as large as the SM contributions but due to hadronic uncertainties this is still insufficient to learn much about new scalars from this decay in the context of models considered here. Flavour violating SM Higgs contributions to rare B d and K decays turn out to be negligible once the constraints from ΔF = 2 processes are taken into account. But \( \mathcal{B} \)(B s μ + μ ) can still be enhanced up to 8%. Finally, we point out striking differences between the correlations found here and in scenarios in which tree-level FCNCs are mediated by a new neutral gauge boson Z′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Buras, F. De Fazio and J. Girrbach, The anatomy of Zand Z with flavour changing neutral currents in the flavour precision era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Blanke, A.J. Buras, K. Gemmler and T. Heidsieck, ΔF = 2 observables and BX q γ decays in the left-right model: Higgs particles striking back, JHEP 03 (2012) 024 [arXiv:1111.5014] [INSPIRE].

    Article  ADS  Google Scholar 

  3. W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi and D.M. Straub, Anatomy and phenomenology of FCNC and CPV effects in SUSY theories, Nucl. Phys. B 830 (2010) 17 [arXiv:0909.1333] [INSPIRE].

    Article  ADS  Google Scholar 

  4. M. Blanke et al., Rare and CP-violating K and B decays in the littlest Higgs model with T parity, JHEP 01 (2007) 066 [hep-ph/0610298] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Blanke, A.J. Buras, B. Duling, S. Recksiegel and C. Tarantino, FCNC processes in the littlest Higgs model with T-parity: a 2009 look, Acta Phys. Polon. B 41 (2010) 657 [arXiv:0906.5454] [INSPIRE].

    Google Scholar 

  6. M. Blanke, A.J. Buras, B. Duling, K. Gemmler and S. Gori, Rare K and B decays in a warped extra dimension with custodial protection, JHEP 03 (2009) 108 [arXiv:0812.3803] [INSPIRE].

    Article  ADS  Google Scholar 

  7. W. Altmannshofer, P. Paradisi and D.M. Straub, Model-independent constraints on new physics in bs transitions, JHEP 04 (2012) 008 [arXiv:1111.1257] [INSPIRE].

    Article  ADS  Google Scholar 

  8. W. Altmannshofer and D.M. Straub, Cornering new physics in bs transitions, JHEP 08 (2012) 121 [arXiv:1206.0273] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A.J. Buras and J. Girrbach, On the correlations between flavour observables in minimal U(2)3 models, JHEP 01 (2013) 007 [arXiv:1206.3878] [INSPIRE].

    Article  ADS  Google Scholar 

  10. K. De Bruyn et al., Branching ratio measurements of B s decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].

    ADS  Google Scholar 

  11. K. De Bruyn et al., Probing new physics via the \( B_s^0\to {\mu^{+}}{\mu^{-}} \) effective lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The anatomy of quark flavour observables in 331 models in the flavour precision era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].

    Article  ADS  Google Scholar 

  13. A.J. Buras and L. Silvestrini, Upper bounds on \( K\to \pi \nu \overline{\nu} \) and K L π 0 e + e from ϵ/ϵ and K L μ + μ , Nucl. Phys. B 546 (1999) 299 [hep-ph/9811471] [INSPIRE].

  14. A. Buras, G. Colangelo, G. Isidori, A. Romanino and L. Silvestrini, Connections between ϵ/ϵ and rare kaon decays in supersymmetry, Nucl. Phys. B 566 (2000) 3 [hep-ph/9908371] [INSPIRE].

    Google Scholar 

  15. M. Blanke, A.J. Buras, S. Recksiegel, C. Tarantino and S. Uhlig, Correlations between ϵ/ϵ and rare K decays in the littlest Higgs model with T-parity, JHEP 06 (2007) 082 [arXiv:0704.3329] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. Becirevic, N. Kosnik, F. Mescia and E. Schneider, Complementarity of the constraints on new physics from B s μ + μ and from BKℓ + decays, Phys. Rev. D 86 (2012) 034034 [arXiv:1205.5811] [INSPIRE].

    ADS  Google Scholar 

  17. A.J. Buras, R. Fleischer, J. Girrbach and R. Knegjens, Probing new physics with the B s μ + μ time-dependent rate, arXiv:1303.3820 [INSPIRE].

  18. A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].

    ADS  Google Scholar 

  19. A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the standard model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A.J. Buras and J. Girrbach, Complete NLO QCD corrections for tree level ΔF = 2 FCNC processes, JHEP 03 (2012) 052 [arXiv:1201.1302] [INSPIRE].

    Article  ADS  Google Scholar 

  21. RBC and UKQCD collaborations, P. Boyle, N. Garron and R. Hudspith, Neutral kaon mixing beyond the standard model with n f  = 2 + 1 chiral fermions, Phys. Rev. D 86 (2012) 054028 [arXiv:1206.5737] [INSPIRE].

  22. ETM collaboration, V. Bertone et al., Kaon mixing beyond the SM from N f  = 2 tmQCD and model independent constraints from the UTA, JHEP 03 (2013) 089 [arXiv:1207.1287] [INSPIRE].

  23. C. Bouchard et al., Neutral B mixing from 2 + 1 flavor lattice-QCD: the standard model and beyond, PoS(LATTICE 2011)274 [arXiv:1112.5642] [INSPIRE].

  24. LHCb collaboration, G. Raven, Measurement of the CP-violation phase ϕ s in the B s system at LHCb, arXiv:1212.4140 [INSPIRE].

  25. M. Blanke et al., Particle-antiparticle mixing, ε K , ΔΓ q , \( A_{\mathrm{SL}}^q \) , A CP(B d ψK S ), A CP(B s ψϕ) and BX s,d γ in the littlest Higgs model with T-parity, JHEP 12 (2006) 003 [hep-ph/0605214] [INSPIRE].

  26. S. Herrlich and U. Nierste, Enhancement of the K L -K S mass difference by short distance QCD corrections beyond leading logarithms, Nucl. Phys. B 419 (1994) 292 [hep-ph/9310311] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Herrlich and U. Nierste, Indirect CP-violation in the neutral kaon system beyond leading logarithms, Phys. Rev. D 52 (1995) 6505 [hep-ph/9507262] [INSPIRE].

    ADS  Google Scholar 

  28. S. Herrlich and U. Nierste, The complete |ΔS| = 2 Hamiltonian in the next-to-leading order, Nucl. Phys. B 476 (1996) 27 [hep-ph/9604330] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ε parameter and \( {B^0}-{{\overline{B}}^0} \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].

    Article  ADS  Google Scholar 

  30. J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0}\hbox{--} {{\overline{B}}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].

  31. J. Brod and M. Gorbahn, ϵ K at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].

    ADS  Google Scholar 

  32. J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵ K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].

    ADS  Google Scholar 

  34. A.J. Buras, D. Guadagnoli and G. Isidori, On ϵ K beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].

    ADS  Google Scholar 

  35. G. Buchalla and A.J. Buras, The rare decays \( k\to \pi \nu \overline{\nu} \) , \( B\to X\nu \overline{\nu} \) and B + : an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].

  36. M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].

    ADS  Google Scholar 

  37. R. Fleischer, On branching ratios of B s decays and the search for new physics in \( B_s^0\to {\mu^{+}}{\mu^{-}} \), arXiv:1208.2843 [INSPIRE].

  38. LHCb collaboration, G. Cowan et al., Tagged time-dependent angular analysis of \( B_s^0\to {J \left/ {{\psi \phi }} \right.} \) decays at LHCb, LHCb-CONF-2012-002, CERN, Geneva Switzerland (2012).

  39. S. Descotes-Genon, J. Matias and J. Virto, An analysis of B d,s mixing angles in presence of new physics and an update of \( {B_s}\to {K^{0* }}{{\overline{K}}^{0* }} \), Phys. Rev. D 85 (2012) 034010 [arXiv:1111.4882] [INSPIRE].

    ADS  Google Scholar 

  40. LHCb collaboration, Strong constraints on the rare decays B s μ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

  41. LHCb collaboration, First evidence for the decay \( B_s^0\to {\mu^{+}}{\mu^{-}} \), Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

  42. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the Standard Model prediction for BR(B s,d μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    ADS  Google Scholar 

  43. HPQCD collaboration, R. Dowdall, C. Davies, R. Horgan, C. Monahan and J. Shigemitsu, B-meson decay constants from improved lattice NRQCD and physical u, d, s and c sea quarks, arXiv:1302.2644 [INSPIRE].

  44. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  45. M. Misiak, Rare B-meson decays, arXiv:1112.5978 [INSPIRE].

  46. M. Gorbahn and U. Haisch, Charm quark contribution to K L μ + μ at next-to-next-to-leading, Phys. Rev. Lett. 97 (2006) 122002 [hep-ph/0605203] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Isidori and R. Unterdorfer, On the short distance constraints from K L,S μ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Mescia, C. Smith and S. Trine, K L π 0 e + e and K L π 0 μ + μ : a binary star on the stage of flavor physics, JHEP 08 (2006) 088 [hep-ph/0606081] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Prades, ChPT progress on non-leptonic and radiative kaon decays, PoS(KAON)022 [arXiv:0707.1789] [INSPIRE].

  50. G. Isidori, C. Smith and R. Unterdorfer, The rare decay K L π 0 μ + μ within the SM, Eur. Phys. J. C 36 (2004) 57 [hep-ph/0404127] [INSPIRE].

    Article  ADS  Google Scholar 

  51. S. Friot, D. Greynat and E. De Rafael, Rare kaon decays revisited, Phys. Lett. B 595 (2004) 301 [hep-ph/0404136] [INSPIRE].

    ADS  Google Scholar 

  52. C. Bruno and J. Prades, Rare kaon decays in the 1/N c expansion, Z. Phys. C 57 (1993) 585 [hep-ph/9209231] [INSPIRE].

    ADS  Google Scholar 

  53. KTeV collaboration, A. Alavi-Harati et al., Search for the rare decay K L π 0 e + e , Phys. Rev. Lett. 93 (2004) 021805 [hep-ex/0309072] [INSPIRE].

  54. KTEV collaboration, A. Alavi-Harati et al., Search for the decay K L π 0 μ + μ , Phys. Rev. Lett. 84 (2000) 5279 [hep-ex/0001006] [INSPIRE].

  55. M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].

  56. M. Blanke, A.J. Buras, S. Recksiegel and C. Tarantino, The littlest Higgs model with T-parity facing CP-violation in \( {B_s}-{{\overline{B}}_s} \) mixing, arXiv:0805.4393 [INSPIRE].

  57. G. Buchalla, G. D’Ambrosio and G. Isidori, Extracting short distance physics from K L,S π 0 e + e decays, Nucl. Phys. B 672 (2003) 387 [hep-ph/0308008] [INSPIRE].

    Article  ADS  Google Scholar 

  58. A.J. Buras, M.E. Lautenbacher, M. Misiak and M. Münz, Direct CP-violation in K L π 0 e + e beyond leading logarithms, Nucl. Phys. B 423 (1994) 349 [hep-ph/9402347] [INSPIRE].

  59. E. Lunghi and A. Soni, Possible indications of new physics in B d -mixing and in sin(2β) determinations, Phys. Lett. B 666 (2008) 162 [arXiv:0803.4340] [INSPIRE].

    ADS  Google Scholar 

  60. G. Ricciardi, Brief review on semileptonic B decays, Mod. Phys. Lett. A 27 (2012) 1230037 [arXiv:1209.1407] [INSPIRE].

    ADS  Google Scholar 

  61. Belle collaboration, I. Adachi et al., Measurement of \( {B^{-}}\to {\tau^{-}}{{\overline{\nu}}_{\tau }} \) with a hadronic tagging method using the full data sample of Belle, Phys. Rev. Lett. 110 (2013) 131801 [arXiv:1208.4678] [INSPIRE].

  62. C. Tarantino, Flavor lattice QCD in the precision era, arXiv:1210.0474 [INSPIRE].

  63. A.J. Buras, J. Girrbach and R. Ziegler, Particle-antiparticle mixing, CP-violation and rare K and B decays in a minimal theory of fermion masses, JHEP 04 (2013) 168 [arXiv:1301.5498] [INSPIRE].

    Article  ADS  Google Scholar 

  64. I. de Medeiros Varzielas et al., Proceedings of the 2nd workshop on flavor symmetries and consequences in accelerators and cosmology (FLASY12), arXiv:1210.6239 [INSPIRE].

  65. M. Antonelli et al., Flavor physics in the quark sector, Phys. Rept. 494 (2010) 197 [arXiv:0907.5386] [INSPIRE].

    Article  ADS  Google Scholar 

  66. LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].

  67. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

  68. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  69. K. Chetyrkin et al., Charm and bottom quark masses: an update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].

    ADS  Google Scholar 

  70. HPQCD collaboration, I. Allison et al., High-precision charm-quark mass from current-current correlators in lattice and continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].

  71. CDF and D0 collaborations, T. Aaltonen et al., Combination of the top-quark mass measurements from the Tevatron collider, Phys. Rev. D 86 (2012) 092003 [arXiv:1207.1069] [INSPIRE].

  72. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  73. A.J. Buras and J. Girrbach, BSM models facing the recent LHCb data: a first look, Acta Phys. Polon. B 43 (2012) 1427 [arXiv:1204.5064] [INSPIRE].

    Article  Google Scholar 

  74. R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R. Barbieri, P. Campli, G. Isidori, F. Sala and D.M. Straub, B-decay CP-asymmetries in SUSY with a U(2)3 flavour symmetry, Eur. Phys. J. C 71 (2011) 1812 [arXiv:1108.5125] [INSPIRE].

    Article  ADS  Google Scholar 

  76. R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  77. R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Less minimal flavour violation, JHEP 10 (2012) 040 [arXiv:1206.1327] [INSPIRE].

    Article  ADS  Google Scholar 

  78. A. Crivellin, L. Hofer and U. Nierste, The MSSM with a softly broken U(2)3 flavor symmetry, PoS(EPS-HEP2011)145 [arXiv:1111.0246] [INSPIRE].

  79. A. Crivellin, L. Hofer, U. Nierste and D. Scherer, Phenomenological consequences of radiative flavor violation in the MSSM, Phys. Rev. D 84 (2011) 035030 [arXiv:1105.2818] [INSPIRE].

    ADS  Google Scholar 

  80. A. Crivellin and U. Nierste, Supersymmetric renormalisation of the CKM matrix and new constraints on the squark mass matrices, Phys. Rev. D 79 (2009) 035018 [arXiv:0810.1613] [INSPIRE].

    ADS  Google Scholar 

  81. A.J. Buras, M.V. Carlucci, S. Gori and G. Isidori, Higgs-mediated FCNCs: natural flavour conservation vs. minimal flavour violation, JHEP 10 (2010) 009 [arXiv:1005.5310] [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Girrbach.

Additional information

ArXiv ePrint: 1303.3723

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buras, A.J., De Fazio, F., Girrbach, J. et al. The anatomy of neutral scalars with FCNCs in the flavour precision era. J. High Energ. Phys. 2013, 111 (2013). https://doi.org/10.1007/JHEP06(2013)111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)111

Keywords

Navigation