Skip to main content

Exact results for supersymmetric abelian vortex loops in 2 + 1 dimensions


We define a class of supersymmetric defect loop operators in \( \mathcal{N} \) = 2 gauge theories in 2 + 1 dimensions. We give a prescription for computing the expectation value of such operators in a generic \( \mathcal{N} \) = 2 theory on the three-sphere using localization. We elucidate the role of defect loop operators in IR dualities of supersymmetric gauge theories, and write down their transformation properties under the SL(2, \( \mathbb{Z} \)) action on conformal theories with abelian global symmetries.

This is a preview of subscription content, access via your institution.


  1. G. Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  2. C. Montonen and D.I. Olive, Magnetic Monopoles as Gauge Particles?, Phys. Lett. B 72 (1977) 117 [INSPIRE].

    ADS  Google Scholar 

  3. E. Witten and D.I. Olive, Supersymmetry Algebras That Include Topological Charges, Phys. Lett. B 78 (1978) 97 [INSPIRE].

    ADS  Google Scholar 

  4. A. Kapustin, Wilson-t Hooft operators in four-dimensional gauge theories and S-duality, Phys. Rev. D 74 (2006) 025005 [hep-th/0501015] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. N. Drukker, J. Gomis and D. Young, Vortex Loop Operators, M2-branes and Holography, JHEP 03 (2009) 004 [arXiv:0810.4344] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  6. S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, hep-th/0612073 [INSPIRE].

  7. G.W. Moore and N. Seiberg, Taming the Conformal Zoo, Phys. Lett. B 220 (1989) 422 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351.

    MathSciNet  ADS  MATH  Article  Google Scholar 

  9. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. M. Blau and G. Thompson, Localization and diagonalization: A review of functional integral techniques for low dimensional gauge theories and topological field theories, J. Math. Phys. 36 (1995) 2192 [hep-th/9501075] [INSPIRE].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  11. E. Witten, Topological Quantum Field Theory, Commun. Math. Phys. 117 (1988) 353.

    MathSciNet  ADS  MATH  Article  Google Scholar 

  12. J. Gomis, T. Okuda and V. Pestun, Exact Results fort Hooft Loops in Gauge Theories on S4, JHEP 05 (2012) 141 [arXiv:1105.2568] [INSPIRE].

    ADS  Article  Google Scholar 

  13. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  14. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

    ADS  Google Scholar 

  15. E. Witten, SL(2, \( \mathbb{Z} \)) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].

  16. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    ADS  Article  Google Scholar 

  17. T. Dimofte, D. Gaiotto and S. Gukov, Gauge Theories Labelled by Three-Manifolds, arXiv:1108.4389 [INSPIRE].

  18. T. Dimofte, D. Gaiotto and S. Gukov, 3-Manifolds and 3d Indices, arXiv:1112.5179 [INSPIRE].

  19. O. Aharony, IR duality in D = 3 N = 2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys. Lett. B 404 (1997) 71 [hep-th/9703215] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Brian Willett.

Additional information

ArXiv ePrint: 1211.2861

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kapustin, A., Willett, B. & Yaakov, I. Exact results for supersymmetric abelian vortex loops in 2 + 1 dimensions. J. High Energ. Phys. 2013, 99 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Supersymmetric gauge theory
  • Duality in Gauge Field Theories
  • Solitons Monopoles and Instantons