Skip to main content
Log in

Discovering Minimal Universal Extra Dimensions (MUED) at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In this work we discuss our consistent implementation of the minimal model of Universal Extra Dimensions in CalcHEP. We pay special attention to the gauge invariance issues that arise due to the incorporation of 5D quantum corrections. After validating the implementation we perform a complete study of the tri-lepton signature, including a realistic estimate of the backgrounds, for the present LHC energy and luminosity. We also derive the expected LHC discovery reach for different luminosities, both at \( \sqrt{s}=7 \) TeV and 8 TeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge monographs on mathematical physics, Cambridge University Press, New York, NY, U.S.A. (1987).

  2. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

    ADS  Google Scholar 

  3. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].

    ADS  Google Scholar 

  4. B.A. Dobrescu and E. Poppitz, Number of fermion generations derived from anomaly cancellation, Phys. Rev. Lett. 87 (2001) 031801 [hep-ph/0102010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. N. Arkani-Hamed and M. Schmaltz, Hierarchies without symmetries from extra dimensions, Phys. Rev. D 61 (2000) 033005 [hep-ph/9903417] [INSPIRE].

    ADS  Google Scholar 

  6. N. Arkani-Hamed, L.J. Hall, D. Tucker-Smith and N. Weiner, Exponentially small supersymmetry breaking from extra dimensions, Phys. Rev. D 63 (2001) 056003 [hep-ph/9911421] [INSPIRE].

    ADS  Google Scholar 

  7. T. Appelquist, H.-C. Cheng and B.A. Dobrescu, Bounds on universal extra dimensions, Phys. Rev. D 64 (2001) 035002 [hep-ph/0012100] [INSPIRE].

    ADS  Google Scholar 

  8. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Bosonic supersymmetry? Getting fooled at the CERN LHC, Phys. Rev. D 66 (2002) 056006 [hep-ph/0205314] [INSPIRE].

    ADS  Google Scholar 

  9. G. Servant and T.M. Tait, Is the lightest Kaluza-Klein particle a viable dark matter candidate?, Nucl. Phys. B 650 (2003) 391 [hep-ph/0206071] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Muck, A. Pilaftsis and R. Ruckl, Minimal higher dimensional extensions of the standard model and electroweak observables, Phys. Rev. D 65 (2002) 085037 [hep-ph/0110391] [INSPIRE].

    ADS  Google Scholar 

  11. H.-C. Cheng, K.T. Matchev and M. Schmaltz, Radiative corrections to Kaluza-Klein masses, Phys. Rev. D 66 (2002) 036005 [hep-ph/0204342] [INSPIRE].

    ADS  Google Scholar 

  12. G. Bélanger, M. Kakizaki and A. Pukhov, Dark matter in UED: the Role of the second KK level, JCAP 02 (2011) 009 [arXiv:1012.2577] [INSPIRE].

    Article  Google Scholar 

  13. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Bhattacharyya, A. Datta, S.K. Majee and A. Raychaudhuri, Exploring the Universal Extra Dimension at the LHC, Nucl. Phys. B 821 (2009) 48 [arXiv:0904.0937] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Choudhury, A. Datta and K. Ghosh, Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC, JHEP 08 (2010) 051 [arXiv:0911.4064] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Datta, A. Datta and S. Poddar, Enriching the exploration of the mUED model with event shape variables at the CERN LHC, Phys. Lett. B 712 (2012) 219 [arXiv:1111.2912] [INSPIRE].

    ADS  Google Scholar 

  17. B. Bhattacherjee and K. Ghosh, Search for the minimal universal extra dimension model at the LHC with \( \sqrt{s}=7 \) TeV, Phys. Rev. D 83 (2011) 034003 [arXiv:1006.3043] [INSPIRE].

    ADS  Google Scholar 

  18. H. Murayama, M.M. Nojiri and K. Tobioka, Improved discovery of a nearly degenerate model: MUED using MT2 at the LHC, Phys. Rev. D 84 (2011) 094015 [arXiv:1107.3369] [INSPIRE].

    ADS  Google Scholar 

  19. I. Gogoladze and C. Macesanu, Precision electroweak constraints on Universal Extra Dimensions revisited, Phys. Rev. D 74 (2006) 093012 [hep-ph/0605207] [INSPIRE].

    ADS  Google Scholar 

  20. K. Nishiwaki, K.-y. Oda, N. Okuda and R. Watanabe, A Bound on Universal Extra Dimension Models from up to 2fb −1 of LHC Data at 7TeV, Phys. Lett. B 707 (2012) 506 [arXiv:1108.1764] [INSPIRE].

    ADS  Google Scholar 

  21. G. Bélanger, A. Belyaev, M. Brown, M. Kakizaki and A. Pukhov, Testing Minimal Universal Extra Dimensions Using Higgs Boson Searches at the LHC, Phys. Rev. D 87 (2013) 016008 [arXiv:1207.0798] [INSPIRE].

    ADS  Google Scholar 

  22. Y. Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B 126 (1983) 309 [INSPIRE].

    ADS  Google Scholar 

  23. H. Georgi, A.K. Grant and G. Hailu, Brane couplings from bulk loops, Phys. Lett. B 506 (2001) 207 [hep-ph/0012379] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. G. von Gersdorff, N. Irges and M. Quirós, Bulk and brane radiative effects in gauge theories on orbifolds, Nucl. Phys. B 635 (2002) 127 [hep-th/0204223] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Puchwein and Z. Kunszt, Radiative corrections with 5 − D mixed position /momentum space propagators, Annals Phys. 311 (2004) 288 [hep-th/0309069] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  26. H. Gies, Renormalizability of gauge theories in extra dimensions, Phys. Rev. D 68 (2003) 085015 [hep-th/0305208] [INSPIRE].

    ADS  Google Scholar 

  27. E. Alvarez and A.F. Faedo, Renormalized masses of heavy Kaluza-Klein states, Phys. Rev. D 74 (2006) 124029 [hep-th/0606267] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  28. S. Bauman and K.R. Dienes, New Regulators for Quantum Field Theories with Compactified Extra Dimensions. Part I. Fundamentals, Phys. Rev. D 77 (2008) 125005 [arXiv:0712.3532] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. S. Bauman and K.R. Dienes, New Regulators for Quantum Field Theories with Compactified Extra Dimensions. Part II. Ultraviolet Finiteness and Effective Field Theory Implementation, Phys. Rev. D 77 (2008) 125006 [arXiv:0801.4110] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].

    ADS  Google Scholar 

  31. A. Falkowski, C. Grojean and S. Pokorski, Loop corrections in higher dimensions via deconstruction, Phys. Lett. B 581 (2004) 236 [hep-ph/0310201] [INSPIRE].

    ADS  Google Scholar 

  32. Z. Kunszt, A. Nyffeler and M. Puchwein, Deconstructing nonAbelian gauge theories at one loop, JHEP 03 (2004) 061 [hep-ph/0402269] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Semenov, LanHEP: a Package for the automatic generation of Feynman rules in field theory. Version 3.0, Comput. Phys. Commun. 180 (2009) 431 [arXiv:0805.0555] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. N.D. Christensen et al., A Comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].

    ADS  Google Scholar 

  35. A. Datta, K. Kong and K.T. Matchev, Minimal Universal Extra Dimensions in CalcHEP/CompHEP, New J. Phys. 12 (2010) 075017 [arXiv:1002.4624] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Semenov, LanHEP - a package for automatic generation of Feynman rules from the Lagrangian. Updated version 3.1, arXiv:1005.1909 [INSPIRE].

  37. A. Belyaev, C. Leroy, R. Mehdiyev and A. Pukhov, Leptoquark single and pair production at LHC with CalcHEP/CompHEP in the complete model, JHEP 09 (2005) 005 [hep-ph/0502067] [INSPIRE].

    Article  ADS  Google Scholar 

  38. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  39. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  40. M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Google Scholar 

  41. W. Beenakker, R. Hopker, M. Spira and P. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].

    ADS  Google Scholar 

  42. A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].

    ADS  Google Scholar 

  43. W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].

    Article  ADS  Google Scholar 

  44. W. Beenakker et al., Squark and Gluino Hadroproduction, Int. J. Mod. Phys. A 26 (2011) 2637 [arXiv:1105.1110] [INSPIRE].

    ADS  Google Scholar 

  45. A. Belyaev, M. Brown, J. Moreno and P. Svantesson, Exploring Minimal Universal Extra Dimensions at the 14 TeV LHC, in preparation.

  46. G. Brooijmans et al., Les Houches 2011: Physics at TeV Colliders New Physics Working Group Report, arXiv:1203.1488 [INSPIRE].

  47. CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].

    ADS  Google Scholar 

  48. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in \( \sqrt{s}=7 \) TeV pp collisions with the ATLAS detector, Phys. Lett. B 718 (2013) 841 [arXiv:1208.3144] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Brown.

Additional information

ArXiv ePrint: 1212.4858

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaev, A., Brown, M., Moreno, J.M. et al. Discovering Minimal Universal Extra Dimensions (MUED) at the LHC. J. High Energ. Phys. 2013, 80 (2013). https://doi.org/10.1007/JHEP06(2013)080

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)080

Keywords

Navigation