Skip to main content
Log in

Thermal mass and plasmino for strongly interacting fermions via holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate fermion self energy problem in the strongly coupled dense medium in holographic approach. By working out bottom up models as well as top down ones we showed that vanishing thermal mass and non-existence of temperature generated plasmino mode is the universal feature of the strongly interacting fermion system. We identified that the dual of the bulk Rashiba effect, which was recently found by Herzog et.al, is the presence of the plasmino mode generated by the density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-S. Lee, A Non-Fermi Liquid from a Charged Black Hole: A Critical Fermi Ball, Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

    ADS  Google Scholar 

  2. H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

    ADS  Google Scholar 

  3. T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

    ADS  Google Scholar 

  4. M. Cubrovic, J. Zaanen and K. Schalm, String Theory, Quantum Phase Transitions and the Emergent Fermi-Liquid, Science 325 (2009) 439 [arXiv:0904.1993] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. C.P. Herzog and J. Ren, The Spin of Holographic Electrons at Nonzero Density and Temperature, JHEP 06 (2012) 078 [arXiv:1204.0518] [INSPIRE].

    Article  ADS  Google Scholar 

  6. E. Braaten and R.D. Pisarski, Resummation and Gauge Invariance of the Gluon Damping Rate in Hot QCD, Phys. Rev. Lett. 64 (1990) 1338 [INSPIRE].

    Article  ADS  Google Scholar 

  7. E. Braaten and R.D. Pisarski, Calculation of the gluon damping rate in hot QCD, Phys. Rev. D 42 (1990) 2156 [INSPIRE].

    ADS  Google Scholar 

  8. E. Braaten and R.D. Pisarski, Soft Amplitudes in Hot Gauge Theories: A General Analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  9. E. Braaten and R.D. Pisarski, Calculation of the quark damping rate in hot QCD, Phys. Rev. D 46 (1992) 1829 [INSPIRE].

    ADS  Google Scholar 

  10. E. Braaten and R.D. Pisarski, Simple effective Lagrangian for hard thermal loops, Phys. Rev. D 45 (1992) 1827 [INSPIRE].

    ADS  Google Scholar 

  11. M. Le Bellac, Thermal Field Theory, Cambridge University Press, Cambridge (2000).

    Google Scholar 

  12. J.I. Kapusta and C. Gale, Finite-Temperature Field Theory: Principles and Applications, Cambridge University Press, Cambridge (2006).

    Book  Google Scholar 

  13. M. Harada and Y. Nemoto, Quasi-fermion spectrum at finite temperature from coupled Schwinger-Dyson equations for a fermion-boson system, Phys. Rev. D 78 (2008) 014004 [arXiv:0803.3257] [INSPIRE].

    ADS  Google Scholar 

  14. H. Nakkagawa, H. Yokota and K. Yoshida, Vanishing Thermal Mass in the Strongly Coupled QCD/QED medium, Phys. Rev. D 85 (2012) 031902 [arXiv:1111.0117] [INSPIRE].

    ADS  Google Scholar 

  15. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  16. K.-Y. Kim, S.-J. Sin and I. Zahed, Dense hadronic matter in holographic QCD, hep-th/0608046 [INSPIRE].

  17. S. Nakamura, Y. Seo, S.-J. Sin and K. Yogendran, A New Phase at Finite Quark Density from AdS/CFT, J. Korean Phys. Soc. 52 (2008) 1734 [hep-th/0611021] [INSPIRE].

    Article  ADS  Google Scholar 

  18. O. Bergman, G. Lifschytz and M. Lippert, Holographic Nuclear Physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [INSPIRE].

    Article  ADS  Google Scholar 

  19. V. Klimov, Spectrum of Elementary Fermi Excitations in Quark Gluon Plasma. (In Russian), Yad. Fiz. 33 (1981) 1734 [Sov. J. Nucl. Phys. 33 (1981) 934] [INSPIRE].

  20. H.A. Weldon, Dynamical holes in the quark-gluon plasma, Phys. Rev. D 40 (1989) 2410 [INSPIRE].

    ADS  Google Scholar 

  21. H.A. Weldon, Structure of the quark propagator at high temperature, Phys. Rev. D 61 (2000) 036003 [hep-ph/9908204] [INSPIRE].

    ADS  Google Scholar 

  22. R.D. Pisarski, Renormalized Fermion Propagator In Hot Gauge Theories, Nucl. Phys. A 498 (1989) 423C.

    ADS  Google Scholar 

  23. E. Braaten and T.C. Yuan, Calculation of screening in a hot plasma, Phys. Rev. Lett. 66 (1991) 2183 [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Braaten, Neutrino Emissivity Of An Ultrarelativistic Plasma From Positron And Plasmino Annihilation, Astrophys. J. 392 (1992) 70.

    Article  ADS  Google Scholar 

  25. G. Baym, J.-P. Blaizot and B. Svetitsky, Emergence of new quasiparticles in quantum electrodynamics at finite temperature, Phys. Rev. D 46 (1992) 4043 [INSPIRE].

    ADS  Google Scholar 

  26. J.-P. Blaizot and J.-Y. Ollitrault, Collective fermionic excitations in systems with a large chemical potential, Phys. Rev. D 48 (1993) 1390 [hep-th/9303070] [INSPIRE].

    ADS  Google Scholar 

  27. R. Pisarski, Damping rates for moving particles in hot QCD, Phys. Rev. D 47 (1993) 5589 [INSPIRE].

    ADS  Google Scholar 

  28. J. Blaizot, Quasiparticles in ultrarelativistic plasmas, Nucl. Phys. A 606 (1996) 347 [INSPIRE].

    ADS  Google Scholar 

  29. A. Schaefer and M.H. Thoma, Quark propagation in a quark-gluon plasma with gluon condensate, Phys. Lett. B 451 (1999) 195 [hep-ph/9811364] [INSPIRE].

    ADS  Google Scholar 

  30. A. Peshier, K. Schertler and M.H. Thoma, One loop selfenergies at finite temperature, Annals Phys. 266 (1998) 162 [hep-ph/9708434] [INSPIRE].

    Article  ADS  Google Scholar 

  31. A. Peshier and M.H. Thoma, Quark dispersion relation and dilepton production in the quark gluon plasma, Phys. Rev. Lett. 84 (2000) 841 [hep-ph/9907268] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M.G. Mustafa and M.H. Thoma, Can Van Hove singularities be observed in relativistic heavy ion collisions?, Pramana 60 (2003) 711 [hep-ph/0201060] [INSPIRE].

    Article  ADS  Google Scholar 

  33. C.P. Herzog and J. Ren, The Spin of Holographic Electrons at Nonzero Density and Temperature, JHEP 06 (2012) 078 [arXiv:1204.0518] [INSPIRE].

    Article  ADS  Google Scholar 

  34. S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011) 066009 [arXiv:1107.5321] [INSPIRE].

    ADS  Google Scholar 

  35. A. Allais, J. McGreevy and S.J. Suh, A quantum electron star, Phys. Rev. Lett. 108 (2012) 231602 [arXiv:1202.5308] [INSPIRE].

    Article  ADS  Google Scholar 

  36. Y. Seo, S.-J. Sin and Y. Zhou, Self-energy of Strongly Interacting Fermions in Medium: a Holographic Approach, Phys. Lett. B 723 (2013) 207 [arXiv:1205.3377] [INSPIRE].

    ADS  Google Scholar 

  37. T. Hartman and S.A. Hartnoll, Cooper pairing near charged black holes, JHEP 06 (2010) 005 [arXiv:1003.1918] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Jin Sin.

Additional information

ArXiv ePrint: 1305.1446

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, Y., Sin, SJ. & Zhou, Y. Thermal mass and plasmino for strongly interacting fermions via holography. J. High Energ. Phys. 2013, 76 (2013). https://doi.org/10.1007/JHEP06(2013)076

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)076

Keywords

Navigation