Abstract
We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, \( \mathcal{N} \) = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of n c -cis and n t -trans representations. Analyzing the real scalar and complex linear super-field multiplets, these “chemical enantiomer” numbers are found to be n c = n t = 1 and n c = 1, n t = 2, respectively.
Similar content being viewed by others
References
S.J. Gates Jr. et al., 4D, N = 1 Supersymmetry Genomics (I), JHEP 12 (2009) 008 [arXiv:0902.3830] [INSPIRE].
M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 2, Cambridge University Press, Cambridge U.K. (1987).
J. Polchinski, String Theory. Vol. II: Superstring Theory and Beyond, Cambridge University Press, Cambridge U.K. (1998).
J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
W. Siegel and M. Roček, On off-shell supermultiplets, Phys. Lett. B 105 (1981) 275 [INSPIRE].
S.J. Gates Jr. et al., A detailed Investigation of First and Second Order Supersymmetries for Off-Shell N = 2 and N = 4 Supermultiplets, arXiv:1106.5475 [INSPIRE].
S.J. Gates Jr. and L. Rana, A theory of spinning particles for large-N extended supersymmetry. 2., Phys. Lett. B 369 (1996) 262 [hep-th/9510151] [INSPIRE].
E. Bergshoeff, M. de Roo and B. de Wit, Extended conformal supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].
M. Faux and S.J. Gates Jr., Adinkras: A graphical technology for supersymmetric representation theory, Phys. Rev. D 71 (2005) 065002 [hep-th/0408004] [INSPIRE].
Y.X. Zhang, Adinkras for mathematicians, arXiv:1111.6055 [INSPIRE].
M. Faux, K. Iga and G. Landweber, Dimensional enhancement via supersymmetry, Adv. Math. Phys. 2011 (2011) 259089 [arXiv:0907.3605] [INSPIRE].
M.G. Faux and G.D. Landweber, Spin holography via dimensional enhancement, Phys. Lett. B 681 (2009) 161 [arXiv:0907.4543] [INSPIRE].
C. Doran et al., Adinkras and the Dynamics of Superspace Prepotentials, hep-th/0605269 [INSPIRE].
C. Doran et al., Relating Doubly-Even Error-Correcting Codes, Graphs and Irreducible Representations of N-Extended Supersymmetry, arXiv:0806.0051 [INSPIRE].
S.J. Gates Jr. and T. Hubsch, On Dimensional Extension of Supersymmetry: From Worldlines to Worldsheets, arXiv:1104.0722 [INSPIRE].
H. Georgi, Lie Algebras in Particle Physics, second edition, Perseus Books, New York U.S.A. (1999).
J.R. Silvester, Determinants of Block Matrices, Math. Gaz. 84 (2000) 460.
D.Z. Freedman, Gauge Theories of Antisymmetric Tensor Fields, Caltech. preprint calt-68-624 (1977), unpublished.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1112.2147
Rights and permissions
About this article
Cite this article
Gates, S.J., Hallett, J., Parker, J. et al. 4D, \( \mathcal{N} \) = 1 supersymmetry genomics (II). J. High Energ. Phys. 2012, 71 (2012). https://doi.org/10.1007/JHEP06(2012)071
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2012)071