Skip to main content

Rigid supersymmetric theories in curved superspace

Abstract

We present a uniform treatment of rigid supersymmetric field theories in a curved spacetime \( \mathcal{M} \), focusing on four-dimensional theories with four supercharges. Our discussion is significantly simpler than earlier treatments, because we use classical background values of the auxiliary fields in the supergravity multiplet. We demonstrate our procedure using several examples. For \( \mathcal{M} = Ad{S_4} \) we reproduce the known results in the literature. A supersymmetric Lagrangian for \( \mathcal{M} = {\mathbb{S}^4} \) exists, but unless the field theory is conformal, it is not reflection positive. We derive the Lagrangian for \( \mathcal{M} = {\mathbb{S}^3} \times \mathbb{R} \) and note that the time direction \( \mathbb{R} \) can be rotated to Euclidean signature and be compactified to \( {\mathbb{S}^1} \) only when the theory has a continuous R-symmetry. The partition function on \( \mathcal{M} = {\mathbb{S}^3} \times {\mathbb{S}^1} \) is independent of the parameters of the flat space theory and depends holomorphically on some complex background gauge fields. We also consider R-invariant \( \mathcal{N} = 2 \) theories on \( {\mathbb{S}^3} \) and clarify a few points about them.

This is a preview of subscription content, access via your institution.

References

  1. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, arXiv:0712.2824 [SPIRES].

  2. V. Pestun, Localization of the four-dimensional N = 4 SYM to a two-sphere and 1/8 BPS Wilson loops, arXiv:0906.0638 [SPIRES].

  3. T. Okuda and V. Pestun, On the instantons and the hypermultiplet mass of N = 2* super Yang-Mills on S 4, arXiv:1004.1222 [SPIRES].

  4. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  5. A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [SPIRES].

  6. A. Kapustin, Seiberg-like duality in three dimensions for orthogonal gauge groups, arXiv:1104.0466 [SPIRES].

  7. B. Willett and I. Yaakov, N = 2 Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [SPIRES].

  8. N. Hama, K. Hosomichi and S. Lee, SUSY Gauge Theories on Squashed Three-Spheres, JHEP 05 (2011) 014 [arXiv:1102.4716] [SPIRES].

    ADS  Article  MathSciNet  Google Scholar 

  9. S. Cheon, H. Kim and N. Kim, Calculating the partition function of N = 2 Gauge theories on S 3 and AdS/CFT correspondence, JHEP 05 (2011) 134 [arXiv:1102.5565] [SPIRES].

    ADS  Article  MathSciNet  Google Scholar 

  10. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [SPIRES].

    ADS  Article  MathSciNet  Google Scholar 

  11. D. Martelli and J. Sparks, The large-N limit of quiver matrix models and Sasaki-Einstein manifolds, arXiv:1102.5289 [SPIRES].

  12. N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, arXiv:1103.4844 [SPIRES].

  13. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [SPIRES].

    ADS  Google Scholar 

  14. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, arXiv:1104.0783 [SPIRES].

  15. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, arXiv:1012.3210 [SPIRES].

  16. D.L. Jafferis, I.R. Klebanov, S.S. Pufu and B.R. Safdi, Towards the F-Theorem: N = 2 Field Theories on the Three-Sphere, arXiv:1103.1181 [SPIRES].

  17. A. Amariti, On the exact R charge for N = 2 CS theories, arXiv:1103.1618 [SPIRES].

  18. S. Cheon, D. Gang, S. Kim and J. Park, Refined test of AdS4/CFT3 correspondence for N = 2, 3 theories, JHEP 05 (2011) 027 [arXiv:1102.4273] [SPIRES].

    ADS  Article  MathSciNet  Google Scholar 

  19. V. Niarchos, Comments on F-maximization and R-symmetry in 3D SCFTs, arXiv:1103.5909 [SPIRES].

  20. S. Minwalla, P. Narayan, T. Sharma, V. Umesh and X. Yin, Supersymmetric States in Large-N Chern-Simons-Matter Theories, arXiv:1104.0680 [SPIRES].

  21. D. Sen, Supersymmetry In The Space-time R × S 3, Nucl. Phys. B 284 (1987) 201 [SPIRES].

    ADS  Article  Google Scholar 

  22. D. Sen, Extended Supersymmetry In The Space-time R × S 3, Phys. Rev. D 41 (1990) 667 [SPIRES].

    ADS  Google Scholar 

  23. C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  24. C. Romelsberger, Calculating the Superconformal Index and Seiberg Duality, arXiv:0707.3702 [SPIRES].

  25. J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  26. F.A. Dolan and H. Osborn, Applications of the Superconformal Index for Protected Operators and q-Hypergeometric Identities to N = 1 Dual Theories, Nucl. Phys. B 818 (2009) 137 [arXiv:0801.4947] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  27. V.P. Spiridonov and G.S. Vartanov, Superconformal indices for \( \mathcal{N} = 1 \) theories with multiple duals, Nucl. Phys. B 824 (2010) 192 [arXiv:0811.1909] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  28. V.P. Spiridonov and G.S. Vartanov, Elliptic hypergeometry of supersymmetric dualities, Commun. Math. Phys. 304 (2011) 797 [arXiv:0910.5944] [SPIRES].

    MathSciNet  ADS  MATH  Article  Google Scholar 

  29. A. Gadde, E. Pomoni, L. Rastelli and S.S. Razamat, S-duality and 2d Topological QFT, JHEP 03 (2010) 032 [arXiv:0910.2225] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  30. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The Superconformal Index of the E 6 SCFT, JHEP 08 (2010) 107 [arXiv:1003.4244] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  31. A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the Superconformal Index of N = 1 IR Fixed Points: A Holographic Check, JHEP 03 (2011) 041 [arXiv:1011.5278] [SPIRES].

    ADS  Article  MathSciNet  Google Scholar 

  32. V.P. Spiridonov and G.S. Vartanov, Supersymmetric dualities beyond the conformal window, Phys. Rev. Lett. 105 (2010) 061603 [arXiv:1003.6109] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  33. G.S. Vartanov, On the ISS model of dynamical SUSY breaking, Phys. Lett. B 696 (2011) 288 [arXiv:1009.2153] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  34. F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4d superconformal indices to 3d partition functions, arXiv:1104.1787 [SPIRES].

  35. N. Seiberg, Naturalness Versus Supersymmetric Non-renormalization Theorems, Phys. Lett. B 318 (1993) 469 [hep-ph/9309335] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  36. M.F. Sohnius and P.C. West, An Alternative Minimal Off-Shell Version of N = 1 Supergravity, Phys. Lett. B 105 (1981) 353 [SPIRES].

    ADS  Google Scholar 

  37. K.S. Stelle and P.C. West, Minimal Auxiliary Fields for Supergravity, Phys. Lett. B 74 (1978) 330 [SPIRES].

    ADS  Google Scholar 

  38. S. Ferrara and P. van Nieuwenhuizen, The Auxiliary Fields of Supergravity, Phys. Lett. B 74 (1978) 333 [SPIRES].

    ADS  Google Scholar 

  39. E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B 212 (1983) 413 [SPIRES].

    ADS  Article  Google Scholar 

  40. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

  41. S. Ferrara and B. Zumino, Transformation Properties of the Supercurrent, Nucl. Phys. B 87 (1975) 207 [SPIRES].

    ADS  Article  Google Scholar 

  42. S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace, or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [SPIRES].

    Google Scholar 

  43. Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  44. T. Dumitrescu and N. Seiberg, Supercurrents and Brane Currents in Diverse Dimensions, arXiv:1106.0031 [SPIRES].

  45. Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  46. G. Festuccia, M. Rocek and N. Seiberg, A Taxonomy of Supersymmetric Backgrounds, to appear.

  47. B.W. Keck, An Alternative Class of Supersymmetries, J. Phys. A 8 (1975) 1819 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  48. B. Zumino, Nonlinear Realization of Supersymmetry in de Sitter Space, Nucl. Phys. B 127 (1977) 189 [SPIRES].

    ADS  Article  Google Scholar 

  49. E.A. Ivanov and A.S. Sorin, Wess-Zumino Model as Linear σ-Model of Spontaneously Broken Conformal and OSp(1, 4) Supersymmetries, Sov. J. Nucl. Phys. 30 (1979) 440 [SPIRES].

    MathSciNet  Google Scholar 

  50. E.A. Ivanov and A.S. Sorin, Superfield Formulation Of OSp(1, 4) Supersymmetry, J. Phys. A 13 (1980) 1159 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  51. A. Adams, H. Jockers, V. Kumar and J.M. Lapan, N = 1 σ-models in AdS 4, arXiv:1104.3155 [SPIRES].

  52. I.A. Bandos, E. Ivanov, J. Lukierski and D. Sorokin, On the superconformal flatness of AdS superspaces, JHEP 06 (2002) 040 [hep-th/0205104] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  53. O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [SPIRES].

    ADS  Article  MathSciNet  Google Scholar 

  54. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino Mass without Singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [SPIRES].

    ADS  Article  Google Scholar 

  55. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  56. M. Dine and N. Seiberg, Comments on Quantum Effects in Supergravity Theories, JHEP 03 (2007) 040 [hep-th/0701023] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  57. B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space, JHEP 02 (2009) 043 [arXiv:0811.4504] [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  58. D. Butter and S.M. Kuzenko, N = 2 AdS supergravity and supercurrents, arXiv:1104.2153 [SPIRES].

  59. O. Aharony and N. Seiberg, unpublished.

  60. M. Sohnius and P.C. West, The Tensor Calculus And Matter Coupling Of The Alternative Minimal Auxiliary Field Formulation Of N = 1 Supergravity, Nucl. Phys. B 198 (1982) 493 [SPIRES].

    MathSciNet  ADS  Article  Google Scholar 

  61. A. Gadde and W. Yan, Reducing the 4d Index to the \( {\mathbb{S}^3} \) Partition Function, arXiv:1104.2592 [SPIRES].

  62. Y. Imamura, Relation between the 4d superconformal index and the S 3 partition function, arXiv:1104.4482 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Festuccia.

Additional information

ArXiv ePrint: 1105.0689

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Festuccia, G., Seiberg, N. Rigid supersymmetric theories in curved superspace. J. High Energ. Phys. 2011, 114 (2011). https://doi.org/10.1007/JHEP06(2011)114

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)114

Keywords

  • Supergravity Models
  • Superspaces