Skip to main content

Gluon scattering in AdS from CFT

A preprint version of the article is available at arXiv.

Abstract

We present a systematic study of holographic correlators in a vast array of SCFTs with non-maximal superconformal symmetry. These theories include 4d \( \mathcal{N} \) = 2 SCFTs from D3-branes near F-theory singularities, 5d Seiberg exceptional theories and 6d E-string theory, as well as 3d and 4d phenomenological models with probe flavor branes. We consider current multiplets and their generalizations with higher weights, dual to massless and massive super gluons in the bulk. At leading order in the inverse central charge expansion, connected four-point functions of these operators correspond to tree-level gluon scattering amplitudes in AdS. We show that all such tree-level four-point amplitudes in all these theories are fully fixed by symmetries and consistency conditions and explicitly construct them. Our results encode a wealth of SCFT data and exhibit various interesting emergent structures. These include Parisi-Sourlas-like dimensional reductions, hidden conformal symmetry and an AdS version of the color-kinematic duality.

References

  1. [1]

    E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  2. [2]

    G. Arutyunov and S. Frolov, Four point functions of lowest weight CPOs in N = 4 SYM4 in supergravity approximation, Phys. Rev. D 62 (2000) 064016 [hep-th/0002170] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  3. [3]

    G. Arutyunov and E. Sokatchev, Implications of superconformal symmetry for interacting (2,0) tensor multiplets, Nucl. Phys. B 635 (2002) 3 [hep-th/0201145] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  4. [4]

    G. Arutyunov and E. Sokatchev, On a large N degeneracy in N = 4 SYM and the AdS/CFT correspondence, Nucl. Phys. B 663 (2003) 163 [hep-th/0301058] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  5. [5]

    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  6. [6]

    L.F. Alday and X. Zhou, All Tree-Level Correlators for M-theory on AdS7 × S4, Phys. Rev. Lett. 125 (2020) 131604 [arXiv:2006.06653] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    L.F. Alday and X. Zhou, All Holographic Four-Point Functions in All Maximally Supersymmetric CFTs, Phys. Rev. X 11 (2021) 011056 [arXiv:2006.12505] [INSPIRE].

    Google Scholar 

  8. [8]

    L. Rastelli and X. Zhou, Mellin amplitudes for AdS5 × S5, Phys. Rev. Lett. 118 (2017) 091602 [arXiv:1608.06624] [INSPIRE].

    Article  ADS  Google Scholar 

  9. [9]

    L. Rastelli and X. Zhou, How to Succeed at Holographic Correlators Without Really Trying, JHEP 04 (2018) 014 [arXiv:1710.05923] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  10. [10]

    X. Zhou, On Superconformal Four-Point Mellin Amplitudes in Dimension d > 2, JHEP 08 (2018) 187 [arXiv:1712.02800] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  11. [11]

    X. Zhou, On Mellin Amplitudes in SCFTs with Eight Supercharges, JHEP 07 (2018) 147 [arXiv:1804.02397] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  12. [12]

    L. Rastelli and X. Zhou, Holographic Four-Point Functions in the (2, 0) Theory, JHEP 06 (2018) 087 [arXiv:1712.02788] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  13. [13]

    L. Rastelli, K. Roumpedakis and X. Zhou, AdS3 × S3 Tree-Level Correlators: Hidden Six-Dimensional Conformal Symmetry, JHEP 10 (2019) 140 [arXiv:1905.11983] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  14. [14]

    V. Gonçalves, R. Pereira and X. Zhou, 20′ Five-Point Function from AdS5 × S5 Supergravity, JHEP 10 (2019) 247 [arXiv:1906.05305] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  15. [15]

    S. Caron-Huot and A.-K. Trinh, All tree-level correlators in AdS5 × S5 supergravity: hidden ten-dimensional conformal symmetry, JHEP 01 (2019) 196 [arXiv:1809.09173] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  16. [16]

    C. Behan, P. Ferrero and X. Zhou, More on holographic correlators: Twisted and dimensionally reduced structures, JHEP 04 (2021) 008 [arXiv:2101.04114] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  17. [17]

    G. Parisi and N. Sourlas, Random Magnetic Fields, Supersymmetry and Negative Dimensions, Phys. Rev. Lett. 43 (1979) 744 [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    C.G. Callan Jr. and F. Wilczek, Infrared behavior at negative curvature, Nucl. Phys. B 340 (1990) 366 [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    O. Aharony, M. Berkooz, D. Tong and S. Yankielowicz, Confinement in Anti-de Sitter Space, JHEP 02 (2013) 076 [arXiv:1210.5195] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  20. [20]

    O. Aharony, M. Berkooz, A. Karasik and T. Vaknin, Supersymmetric field theories on AdSp × Sq, JHEP 04 (2016) 066 [arXiv:1512.04698] [INSPIRE].

    MATH  ADS  Google Scholar 

  21. [21]

    B. Doyon and P. Fonseca, Ising field theory on a Pseudosphere, J. Stat. Mech. 0407 (2004) P07002 [hep-th/0404136] [INSPIRE].

    MATH  Google Scholar 

  22. [22]

    O. Aharony, D. Marolf and M. Rangamani, Conformal field theories in anti-de Sitter space, JHEP 02 (2011) 041 [arXiv:1011.6144] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  23. [23]

    M.F. Paulos, J. Penedones, J. Toledo, B.C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP 11 (2017) 133 [arXiv:1607.06109] [INSPIRE].

  24. [24]

    D. Carmi, L. Di Pietro and S. Komatsu, A Study of Quantum Field Theories in AdS at Finite Coupling, JHEP 01 (2019) 200 [arXiv:1810.04185] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  25. [25]

    S. Giombi and H. Khanchandani, CFT in AdS and boundary RG flows, JHEP 11 (2020) 118 [arXiv:2007.04955] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  26. [26]

    A. Fayyazuddin and M. Spalinski, Large N superconformal gauge theories and supergravity orientifolds, Nucl. Phys. B 535 (1998) 219 [hep-th/9805096] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  27. [27]

    O. Aharony, A. Fayyazuddin and J.M. Maldacena, The Large N limit of N = 2, N = 1 field theories from three-branes in F-theory, JHEP 07 (1998) 013 [hep-th/9806159] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  28. [28]

    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  29. [29]

    O.J. Ganor and A. Hanany, Small E8 instantons and tensionless noncritical strings, Nucl. Phys. B 474 (1996) 122 [hep-th/9602120] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  30. [30]

    N. Seiberg and E. Witten, Comments on string dynamics in six-dimensions, Nucl. Phys. B 471 (1996) 121 [hep-th/9603003] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  31. [31]

    A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  32. [32]

    S. Hohenegger and I. Kirsch, A Note on the holography of Chern-Simons matter theories with flavour, JHEP 04 (2009) 129 [arXiv:0903.1730] [INSPIRE].

    Article  ADS  Google Scholar 

  33. [33]

    D. Gaiotto and D.L. Jafferis, Notes on adding D6 branes wrapping Rp3 in AdS4 × CP3, JHEP 11 (2012) 015 [arXiv:0903.2175] [INSPIRE].

    Article  ADS  Google Scholar 

  34. [34]

    Y. Hikida, W. Li and T. Takayanagi, ABJM with Flavors and FQHE, JHEP 07 (2009) 065 [arXiv:0903.2194] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  35. [35]

    X. Zhou, How to Succeed at Witten Diagram Recursions without Really Trying, JHEP 08 (2020) 077 [arXiv:2005.03031] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  36. [36]

    S. Giusto, R. Russo, A. Tyukov and C. Wen, The CFT6 origin of all tree-level 4-point correlators in AdS3 × S3 , Eur. Phys. J. C 80 (2020) 736 [arXiv:2005.08560] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  38. [38]

    E.G. Gimon and C. Popescu, The Operator spectrum of the six-dimensional (1, 0) theory, JHEP 04 (1999) 018 [hep-th/9901048] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  39. [39]

    A. Passias and P. Richmond, Perturbing AdS6 ×w S4: linearised equations and spin-2 spectrum, JHEP 07 (2018) 058 [arXiv:1804.09728] [INSPIRE].

    Article  ADS  Google Scholar 

  40. [40]

    A. Brandhuber and Y. Oz, The D4-D8 brane system and five-dimensional fixed points, Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  41. [41]

    M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].

    Article  ADS  Google Scholar 

  42. [42]

    S. Ferrara, A. Kehagias, H. Partouche and A. Zaffaroni, AdS6 interpretation of 5-D superconformal field theories, Phys. Lett. B 431 (1998) 57 [hep-th/9804006] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  43. [43]

    M. Berkooz, A Supergravity dual of a (1, 0) field theory in six-dimensions, Phys. Lett. B 437 (1998) 315 [hep-th/9802195] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  44. [44]

    F.A. Dolan, L. Gallot and E. Sokatchev, On four-point functions of 1/2-BPS operators in general dimensions, JHEP 09 (2004) 056 [hep-th/0405180] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  45. [45]

    P. Cvitanovic, Group theory: Birdtracks, Lie’s and exceptional groups, Princeton University Press (2008) [INSPIRE].

  46. [46]

    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Spheres, Charges, Instantons, and Bootstrap: A Five-Dimensional Odyssey, JHEP 03 (2018) 123 [arXiv:1710.08418] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  47. [47]

    G. Mack, D-independent representation of Conformal Field Theories in D dimensions via transformation to auxiliary Dual Resonance Models. Scalar amplitudes, arXiv:0907.2407 [INSPIRE].

  48. [48]

    J. Penedones, Writing CFT correlation functions as AdS scattering amplitudes, JHEP 03 (2011) 025 [arXiv:1011.1485] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  49. [49]

    C. Cordova, T.T. Dumitrescu and K. Intriligator, Multiplets of Superconformal Symmetry in Diverse Dimensions, JHEP 03 (2019) 163 [arXiv:1612.00809] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  50. [50]

    D. Mazáč, L. Rastelli and X. Zhou, A Basis of Analytic Functionals for CFTs in General Dimension, arXiv:1910.12855 [INSPIRE].

  51. [51]

    C. Sleight and M. Taronna, The Unique Polyakov Blocks, JHEP 11 (2020) 075 [arXiv:1912.07998] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  52. [52]

    G. Arutyunov and S. Frolov, Some cubic couplings in type IIB supergravity on AdS5 × S5 and three point functions in SYM4 at large N, Phys. Rev. D 61 (2000) 064009 [hep-th/9907085] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  53. [53]

    G. Arutyunov and S. Frolov, On the correspondence between gravity fields and CFT operators, JHEP 04 (2000) 017 [hep-th/0003038] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  54. [54]

    L.F. Alday and X. Zhou, Simplicity of AdS Supergravity at One Loop, JHEP 09 (2020) 008 [arXiv:1912.02663] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  55. [55]

    F. Aprile, J. Drummond, P. Heslop and H. Paul, One-loop amplitudes in AdS5 × S5 supergravity from \( \mathcal{N} \) = 4 SYM at strong coupling, JHEP 03 (2020) 190 [arXiv:1912.01047] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  56. [56]

    F. Aprile et al., Single particle operators and their correlators in free \( \mathcal{N} \) = 4 SYM, JHEP 11 (2020) 072 [arXiv:2007.09395] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  57. [57]

    V.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    V.S. Dotsenko and V.A. Fateev, Four Point Correlation Functions and the Operator Algebra in the Two-Dimensional Conformal Invariant Theories with the Central Charge c < 1, Nucl. Phys. B 251 (1985) 691 [INSPIRE].

    Article  ADS  Google Scholar 

  59. [59]

    C.-M. Chang and Y.-H. Lin, Carving Out the End of the World or (Superconformal Bootstrap in Six Dimensions), JHEP 08 (2017) 128 [arXiv:1705.05392] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  60. [60]

    O. Aharony and Y. Tachikawa, A Holographic computation of the central charges of d = 4, N = 2 SCFTs, JHEP 01 (2008) 037 [arXiv:0711.4532] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  61. [61]

    C.-M. Chang, M. Fluder, Y.-H. Lin and Y. Wang, Romans Supergravity from Five-Dimensional Holograms, JHEP 05 (2018) 039 [arXiv:1712.10313] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  62. [62]

    Y. Imamura and S. Yokoyama, Twisted Sectors in Gravity Duals of N = 4 Chern-Simons Theories, JHEP 11 (2010) 059 [Erratum ibid. 04 (2011) 068] [arXiv:1008.3180] [INSPIRE].

  63. [63]

    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons Theories and AdS4/CFT3 Correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  64. [64]

    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  65. [65]

    S. Terashima and F. Yagi, Orbifolding the Membrane Action, JHEP 12 (2008) 041 [arXiv:0807.0368] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  66. [66]

    N. Bobev, E. Lauria and D. Mazac, Superconformal Blocks for SCFTs with Eight Supercharges, JHEP 07 (2017) 061 [arXiv:1705.08594] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  67. [67]

    F. Baume, M. Fuchs and C. Lawrie, Superconformal Blocks for Mixed 1/2-BPS Correlators with SU(2) R-symmetry, JHEP 11 (2019) 164 [arXiv:1908.02768] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  68. [68]

    H. Elvang and Y.-t. Huang, Scattering Amplitudes in Gauge Theory and Gravity, Cambridge University Press (2015) [DOI].

  69. [69]

    T. Adamo, E. Casali, L. Mason and S. Nekovar, Plane wave backgrounds and colour-kinematics duality, JHEP 02 (2019) 198 [arXiv:1810.05115] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  70. [70]

    S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large N, Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  71. [71]

    S.M. Chester, S.S. Pufu and X. Yin, The M-theory S-matrix From ABJM: Beyond 11D Supergravity, JHEP 08 (2018) 115 [arXiv:1804.00949] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  72. [72]

    S.M. Chester and E. Perlmutter, M-Theory Reconstruction from (2, 0) CFT and the Chiral Algebra Conjecture, JHEP 08 (2018) 116 [arXiv:1805.00892] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  73. [73]

    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  74. [74]

    A. Kaviraj, S. Rychkov and E. Trevisani, Random Field Ising Model and Parisi-Sourlas supersymmetry. Part I. Supersymmetric CFT, JHEP 04 (2020) 090 [arXiv:1912.01617] [INSPIRE].

  75. [75]

    S. Giombi, H. Khanchandani and X. Zhou, Aspects of CFTs on Real Projective Space, J. Phys. A 54 (2021) 024003 [arXiv:2009.03290] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  76. [76]

    M. Nirschl and H. Osborn, Superconformal Ward identities and their solution, Nucl. Phys. B 711 (2005) 409 [hep-th/0407060] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  77. [77]

    C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B.C. van Rees, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys. 336 (2015) 1359 [arXiv:1312.5344] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  78. [78]

    C. Armstrong, A.E. Lipstein and J. Mei, Color/kinematics duality in AdS4, JHEP 02 (2021) 194 [arXiv:2012.02059] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  79. [79]

    S. Albayrak, S. Kharel and D. Meltzer, On duality of color and kinematics in (A)dS momentum space, JHEP 03 (2021) 249 [arXiv:2012.10460] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  80. [80]

    O. Aharony, L.F. Alday, A. Bissi and E. Perlmutter, Loops in AdS from Conformal Field Theory, JHEP 07 (2017) 036 [arXiv:1612.03891] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  81. [81]

    F. Kos, D. Poland and D. Simmons-Duffin, Bootstrapping Mixed Correlators in the 3D Ising Model, JHEP 11 (2014) 109 [arXiv:1406.4858] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  82. [82]

    K.A. Intriligator, Bonus symmetries of N = 4 superYang-Mills correlation functions via AdS duality, Nucl. Phys. B 551 (1999) 575 [hep-th/9811047] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  83. [83]

    K.A. Intriligator and W. Skiba, Bonus symmetry and the operator product expansion of N = 4 SuperYang-Mills, Nucl. Phys. B 559 (1999) 165 [hep-th/9905020] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  84. [84]

    S.M. Chester, J. Lee, S.S. Pufu and R. Yacoby, The \( \mathcal{N} \) = 8 superconformal bootstrap in three dimensions, JHEP 09 (2014) 143 [arXiv:1406.4814] [INSPIRE].

    Article  ADS  Google Scholar 

  85. [85]

    N.B. Agmon, S.M. Chester and S.S. Pufu, The M-theory Archipelago, JHEP 02 (2020) 010 [arXiv:1907.13222] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  86. [86]

    J.-H. Park, Superconformal symmetry in three-dimensions, J. Math. Phys. 41 (2000) 7129 [hep-th/9910199] [INSPIRE].

    MathSciNet  MATH  Article  ADS  Google Scholar 

  87. [87]

    C. Beem, L. Rastelli and B.C. van Rees, \( \mathcal{W} \) symmetry in six dimensions, JHEP 05 (2015) 017 [arXiv:1404.1079] [INSPIRE].

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xinan Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.15830

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alday, L.F., Behan, C., Ferrero, P. et al. Gluon scattering in AdS from CFT. J. High Energ. Phys. 2021, 20 (2021). https://doi.org/10.1007/JHEP06(2021)020

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2021)020

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory
  • Scattering Amplitudes