Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Gauged and ungauged: a nonperturbative test
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Precision test of gauge/gravity duality in D0-brane matrix model at low temperature

10 March 2023

The Monte Carlo String/M-theory (MCSMC) collaboration, Stratos Pateloudis, … Norbert Bodendorfer

Confinement/deconfinement transition in the D0-brane matrix model — A signature of M-theory?

16 May 2022

Monte Carlo String/M-theory collaboration (MCSMC), Georg Bergner, … Hiromasa Watanabe

Strong dynamics with matter in multiple representations: $$\mathrm {SU}(4)$$ SU ( 4 ) gauge theory with fundamental and sextet fermions

30 July 2019

Guido Cossu, Luigi Del Debbio, … David Preti

Thermal phase transition in Yang-Mills matrix model

10 January 2020

Georg Bergner, Norbert Bodendorfer, … Pavlos Vranas

Dynamics of a lattice 2-group gauge theory model

10 September 2021

A. Bochniak, L. Hadasz, … B. Ruba

Induced QCD II: numerical results

09 July 2019

Bastian B. Brandt, Robert Lohmayer & Tilo Wettig

Phase structure of self-dual lattice gauge theories in 4d

27 June 2022

Mariia Anosova, Christof Gattringer, … Tin Sulejmanpasic

Strong coupling from non-equilibrium Monte Carlo simulations

30 July 2020

Olmo Francesconi, Marco Panero & David Preti

Dynamics of QCD3 with rank-two quarks and duality

12 March 2020

Changha Choi, Diego Delmastro, … Zohar Komargodski

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 22 June 2018

Gauged and ungauged: a nonperturbative test

  • Evan Berkowitz1,
  • Masanori Hanada2,3,4,
  • Enrico Rinaldi  ORCID: orcid.org/0000-0003-4134-809X5,6 &
  • …
  • Pavlos Vranas7,6 

Journal of High Energy Physics volume 2018, Article number: 124 (2018) Cite this article

  • 254 Accesses

  • 20 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the thermodynamics of the ‘ungauged’ D0-brane matrix model by Monte Carlo simulation. Our results appear to be consistent with the conjecture by Maldacena and Milekhin.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  2. J.B. Kogut and L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D 11 (1975) 395 [INSPIRE].

    ADS  Google Scholar 

  3. E. Witten, Bound states of strings and p-branes, Nucl. Phys. B 460 (1996) 335 [hep-th/9510135] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S. Ghosh, R.M. Soni and S.P. Trivedi, On the entanglement entropy for gauge theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Aoki et al., On the definition of entanglement entropy in lattice gauge theories, JHEP 06 (2015) 187 [arXiv:1502.04267] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. Hanada, J. Maltz and L. Susskind, Deconfinement transition as black hole formation by the condensation of QCD strings, Phys. Rev. D 90 (2014) 105019 [arXiv:1405.1732] [INSPIRE].

    ADS  Google Scholar 

  7. J. Maldacena and A. Milekhin, To gauge or not to gauge?, JHEP 04 (2018) 084 [arXiv:1802.00428] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  8. T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: a conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. N. Itzhaki, J.M. Maldacena, J. Sonnenschein and S. Yankielowicz, Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D 58 (1998) 046004 [hep-th/9802042] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  11. E. Berkowitz et al., Precision lattice test of the gauge/gravity duality at large-N , Phys. Rev. D 94 (2016) 094501 [arXiv:1606.04951] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. K.N. Anagnostopoulos, M. Hanada, J. Nishimura and S. Takeuchi, Monte Carlo studies of supersymmetric matrix quantum mechanics with sixteen supercharges at finite temperature, Phys. Rev. Lett. 100 (2008) 021601 [arXiv:0707.4454] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Catterall and T. Wiseman, Black hole thermodynamics from simulations of lattice Yang-Mills theory, Phys. Rev. D 78 (2008) 041502 [arXiv:0803.4273] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  14. M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 191602 [arXiv:0811.3102] [INSPIRE].

    Article  ADS  Google Scholar 

  15. D. Kadoh and S. Kamata, One dimensional supersymmetric Yang-Mills theory with 16 supercharges, PoS(LATTICE 2012)064 [arXiv:1212.4919] [INSPIRE].

  16. M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Holographic description of quantum black hole on a computer, Science 344 (2014) 882 [arXiv:1311.5607] [INSPIRE].

    Article  ADS  Google Scholar 

  17. D. Kadoh and S. Kamata, Gauge/gravity duality and lattice simulations of one dimensional SYM with sixteen supercharges, arXiv:1503.08499 [INSPIRE].

  18. V.G. Filev and D. O’Connor, A computer test of holographic flavour dynamics, JHEP 05 (2016) 122 [arXiv:1512.02536] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Hanada, Y. Hyakutake, G. Ishiki and J. Nishimura, Numerical tests of the gauge/gravity duality conjecture for D0-branes at finite temperature and finite N, Phys. Rev. D 94 (2016) 086010 [arXiv:1603.00538] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. M. Hanada, A. Miwa, J. Nishimura and S. Takeuchi, Schwarzschild radius from Monte Carlo calculation of the Wilson loop in supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009) 181602 [arXiv:0811.2081] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. Hanada, J. Nishimura, Y. Sekino and T. Yoneya, Direct test of the gauge-gravity correspondence for Matrix theory correlation functions, JHEP 12 (2011) 020 [arXiv:1108.5153] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Y. Sekino and T. Yoneya, Generalized AdS/CFT correspondence for matrix theory in the large N limit, Nucl. Phys. B 570 (2000) 174 [hep-th/9907029] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE].

  27. E. Halyo, A. Rajaraman and L. Susskind, Braneless black holes, Phys. Lett. B 392 (1997) 319 [hep-th/9605112] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. G.T. Horowitz and J. Polchinski, A Correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. M. Hanada, MMMM, https://sites.google.com/site/hanadamasanori/home/mmmm.

  30. S. Catterall and T. Wiseman, Towards lattice simulation of the gauge theory duals to black holes and hot strings, JHEP 12 (2007) 104 [arXiv:0706.3518] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. O. Aharony, J. Marsano, S. Minwalla and T. Wiseman, Black hole-black string phase transitions in thermal 1+1 dimensional supersymmetric Yang-Mills theory on a circle, Class. Quant. Grav. 21 (2004) 5169 [hep-th/0406210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. O. Aharony et al., The Phase structure of low dimensional large N gauge theories on Tori, JHEP 01 (2006) 140 [hep-th/0508077] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. N. Kawahara, J. Nishimura and S. Takeuchi, Phase structure of matrix quantum mechanics at finite temperature, JHEP 10 (2007) 097 [arXiv:0706.3517] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. G. Mandal, M. Mahato and T. Morita, Phases of one dimensional large N gauge theory in a 1/D expansion, JHEP 02 (2010) 034 [arXiv:0910.4526] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  35. T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large N gauge theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].

    Article  ADS  Google Scholar 

  36. B. de Wit, M. Lüscher and H. Nicolai, The supermembrane is unstable, Nucl. Phys. B 320 (1989) 135 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. A.V. Smilga, Super-Yang-Mills quantum mechanics and supermembrane spectrum, in the proceedings of the Trieste Conference on Supermembranes and Physics in 2 + 1 Dimensions, July 17-21, Trieste Italy (1989), arXiv:1406.5987 [INSPIRE].

  38. E. Berkowitz, M. Hanada and J. Maltz, Chaos in matrix models and black hole evaporation, Phys. Rev. D 94 (2016) 126009 [arXiv:1602.01473] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  40. U.H. Danielsson, G. Ferretti and B. Sundborg, D particle dynamics and bound states, Int. J. Mod. Phys. A 11 (1996) 5463 [hep-th/9603081] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D.N. Kabat and P. Pouliot, A Comment on zero-brane quantum mechanics, Phys. Rev. Lett. 77 (1996) 1004 [hep-th/9603127] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. K. Becker, M. Becker, J. Polchinski and A.A. Tseytlin, Higher order graviton scattering in M(atrix) theory, Phys. Rev. D 56 (1997) R3174 [hep-th/9706072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Institut für Kernphysik and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany

    Evan Berkowitz

  2. Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan

    Masanori Hanada

  3. The Hakubi Center for Advanced Research, Kyoto University, Yoshida Ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan

    Masanori Hanada

  4. Department of Physics, University of Colorado, Boulder, Colorado, 80309, U.S.A.

    Masanori Hanada

  5. RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY, 11973, U.S.A.

    Enrico Rinaldi

  6. Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A.

    Enrico Rinaldi & Pavlos Vranas

  7. Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, U.S.A.

    Pavlos Vranas

Authors
  1. Evan Berkowitz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Masanori Hanada
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Enrico Rinaldi
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Pavlos Vranas
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Enrico Rinaldi.

Additional information

ArXiv ePrint: 1802.02985

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkowitz, E., Hanada, M., Rinaldi, E. et al. Gauged and ungauged: a nonperturbative test. J. High Energ. Phys. 2018, 124 (2018). https://doi.org/10.1007/JHEP06(2018)124

Download citation

  • Received: 19 February 2018

  • Revised: 10 May 2018

  • Accepted: 15 June 2018

  • Published: 22 June 2018

  • DOI: https://doi.org/10.1007/JHEP06(2018)124

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge-gravity correspondence
  • Lattice Quantum Field Theory
  • M(atrix) Theories
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.