Advertisement

Scaling and universality in extremal black hole perturbations

Open Access
Regular Article - Theoretical Physics
  • 14 Downloads

Abstract

We show that the emergent near-horizon conformal symmetry of extremal black holes gives rise to universal behavior in perturbing fields, both near and far from the black hole horizon. The scale-invariance of the near-horizon region entails power law time-dependence with three universal features: (1) the decay off the horizon is always precisely twice as fast as the decay on the horizon; (2) the special rates of 1/t off the horizon and \( 1/\sqrt{v} \) on the horizon commonly occur; and (3) sufficiently high-order transverse derivatives grow on the horizon (Aretakis instability). The results are simply understood in terms of near-horizon (AdS2) holography. We first show how the general features follow from symmetry alone and then go on to present the detailed universal behavior of scalar, electromagnetic, and gravitational perturbations of d-dimensional electrovacuum black holes.

Keywords

Black Holes Conformal and W Symmetry AdS-CFT Correspondence Black Holes in String Theory 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].
  2. [2]
    J.M. Bardeen and G.T. Horowitz, The extreme Kerr throat geometry: A vacuum analog of AdS 2 × S 2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].ADSGoogle Scholar
  3. [3]
    H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    P. Figueras, H.K. Kunduri, J. Lucietti and M. Rangamani, Extremal vacuum black holes in higher dimensions, Phys. Rev. D 78 (2008) 044042 [arXiv:0803.2998] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, Phys. Rev. D 80 (2009) 124008 [arXiv:0809.4266] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    K. Glampedakis and N. Andersson, Late time dynamics of rapidly rotating black holes, Phys. Rev. D 64 (2001) 104021 [gr-qc/0103054] [INSPIRE].
  7. [7]
    M. Casals, S.E. Gralla and P. Zimmerman, Horizon Instability of Extremal Kerr Black Holes: Nonaxisymmetric Modes and Enhanced Growth Rate, Phys. Rev. D 94 (2016) 064003 [arXiv:1606.08505] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    R.A. Konoplya and A. Zhidenko, Massive charged scalar field in the Kerr-Newman background I: quasinormal modes, late-time tails and stability, Phys. Rev. D 88 (2013) 024054 [arXiv:1307.1812] [INSPIRE].
  9. [9]
    S.E. Gralla and P. Zimmerman, Critical Exponents of Extremal Kerr Perturbations, Class. Quant. Grav. 35 (2018) 095002 [arXiv:1711.00855] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS 2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Compère, K. Fransen, T. Hertog and J. Long, Gravitational waves from plunges into Gargantua, Class. Quant. Grav. 35 (2018) 104002 [arXiv:1712.07130] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Casals and P. Zimmerman, Perturbations of Extremal Kerr Spacetime: Analytic Framework and Late-time Tails, arXiv:1801.05830 [INSPIRE].
  13. [13]
    K. Prabhu, The First Law of Black Hole Mechanics for Fields with Internal Gauge Freedom, Class. Quant. Grav. 34 (2017) 035011 [arXiv:1511.00388] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    P. Zimmerman, Horizon instability of extremal Reissner-Nordström black holes to charged perturbations, Phys. Rev. D 95 (2017) 124032 [arXiv:1612.03172] [INSPIRE].ADSGoogle Scholar
  15. [15]
    S.E. Gralla, A. Zimmerman and P. Zimmerman, Transient Instability of Rapidly Rotating Black Holes, Phys. Rev. D 94 (2016) 084017 [arXiv:1608.04739] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    L.M. Burko and G. Khanna, Linearized Stability of Extreme Black Holes, Phys. Rev. D 97 (2018) 061502 [arXiv:1709.10155] [INSPIRE].
  17. [17]
    S. Hadar and H.S. Reall, Is there a breakdown of effective field theory at the horizon of an extremal black hole?, JHEP 12 (2017) 062 [arXiv:1709.09668] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    D. Basu, Introduction to Classical and Modern Analysis and Their Application to Group Representation Theory, World Scientific, (2011).Google Scholar
  19. [19]
    A.O. Barut and C. Fronsdal, On Non-Compact Groups. II. Representations of the 2 + 1 Lorentz Group, Proc. Roy. Soc. Lond. A 287 (1965) 532.Google Scholar
  20. [20]
    P. Breitenlohner and D.Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3. Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184] [INSPIRE].
  23. [23]
    M. Kleban, M. Porrati and R. Rabadán, Stability in asymptotically AdS spaces, JHEP 08 (2005) 016 [hep-th/0409242] [INSPIRE].
  24. [24]
    G. Holzegel, Well-posedness for the massive wave equation on asymptotically anti-de Sitter spacetimes, arXiv:1103.0710 [INSPIRE].
  25. [25]
    C.M. Warnick, The massive wave equation in asymptotically AdS spacetimes, Commun. Math. Phys. 321 (2013) 85 [arXiv:1202.3445] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    DLMF, NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/ Release 1.0.5 of 2012-10-01.
  27. [27]
    H. Bateman and A. Erdélyi, Higher transcendental functions, Calif. Inst. Technol, Bateman Manuscr. Project McGraw-Hill, New York, NY, (1955), https://cds.cern.ch/record/100233.
  28. [28]
    B.M. Project, H. Bateman, A. Erdélyi and U.S.O. of Naval Research, Tables of Integral Transforms: Based, in Part, on Notes Left by Harry Bateman, v. 2, McGraw-Hill, (1954).Google Scholar
  29. [29]
    L. Slater, Confluent hypergeometric functions, Cambridge University Press, (1960).Google Scholar
  30. [30]
    D.T. Son and A.O. Starinets, Minkowski space correlators in AdS/CFT correspondence: Recipe and applications, JHEP 09 (2002) 042 [hep-th/0205051] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    H.S. Reall, Higher dimensional black holes and supersymmetry, Phys. Rev. D 68 (2003) 024024 [Erratum ibid. D 70 (2004) 089902] [hep-th/0211290] [INSPIRE].
  32. [32]
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen and S.P. Trivedi, Rotating attractors, JHEP 10 (2006) 058 [hep-th/0606244] [INSPIRE].
  33. [33]
    H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Rel. 16 (2013) 8 [arXiv:1306.2517] [INSPIRE].CrossRefMATHGoogle Scholar
  34. [34]
    M. Durkee and H.S. Reall, Perturbations of near-horizon geometries and instabilities of Myers-Perry black holes, Phys. Rev. D 83 (2011) 104044 [arXiv:1012.4805] [INSPIRE].ADSGoogle Scholar
  35. [35]
    D.D.K. Chow, M. Cvetič, H. Lü and C.N. Pope, Extremal Black Hole/CFT Correspondence in (Gauged) Supergravities, Phys. Rev. D 79 (2009) 084018 [arXiv:0812.2918] [INSPIRE].ADSMathSciNetGoogle Scholar
  36. [36]
    S. Hollands and A. Ishibashi, Instabilities of extremal rotating black holes in higher dimensions, Commun. Math. Phys. 339 (2015) 949 [arXiv:1408.0801] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    S. Hollands, A. Ishibashi and R.M. Wald, A higher dimensional stationary rotating black hole must be axisymmetric, Commun. Math. Phys. 271 (2007) 699 [gr-qc/0605106] [INSPIRE].
  38. [38]
    J. Ren, Analytic quantum critical points from holography, arXiv:1210.2722 [INSPIRE].
  39. [39]
    S.A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE].
  40. [40]
    J.M. Cohen and L.S. Kegeles, Electromagnetic fields in curved spaces - a constructive procedure, Phys. Rev. D 10 (1974) 1070 [INSPIRE].ADSMathSciNetGoogle Scholar
  41. [41]
    P.L. Chrzanowski, Vector Potential and Metric Perturbations of a Rotating Black Hole, Phys. Rev. D 11 (1975) 2042 [INSPIRE].ADSGoogle Scholar
  42. [42]
    R.M. Wald, Construction of Solutions of Gravitational, Electromagnetic, Or Other Perturbation Equations from Solutions of Decoupled Equations, Phys. Rev. Lett. 41 (1978) 203 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J.M. Stewart, Hertz-Bromwich-Debye-Whittaker-Penrose Potentials in General Relativity, Proc. Roy. Soc. Lond. A 367 (1979) 527 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    M. Godazgar, The perturbation theory of higher dimensional spacetimes a la Teukolsky, Class. Quant. Grav. 29 (2012) 055008 [arXiv:1110.5779] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    R.M. Wald, On perturbations of a Kerr black hole, J. Math. Phys. 14 (1973) 1453.ADSCrossRefGoogle Scholar
  46. [46]
    B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations, Commun. Math. Phys. 10 (1968) 280 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  47. [47]
    M.M. Caldarelli, G. Cognola and D. Klemm, Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories, Class. Quant. Grav. 17 (2000) 399 [hep-th/9908022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    T. Hartman, K. Murata, T. Nishioka and A. Strominger, CFT Duals for Extreme Black Holes, JHEP 04 (2009) 019 [arXiv:0811.4393] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    G. Compère, The Kerr/CFT correspondence and its extensions, Living Rev. Rel. 15 (2012) 11 [arXiv:1203.3561] [INSPIRE].CrossRefMATHGoogle Scholar
  50. [50]
    C.M. Chambers and I.G. Moss, Stability of the Cauchy horizon in Kerr-de Sitter space-times, Class. Quant. Grav. 11 (1994) 1035 [gr-qc/9404015] [INSPIRE].
  51. [51]
    L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    A. Chamblin, R. Emparan, C.V. Johnson and R.C. Myers, Charged AdS black holes and catastrophic holography, Phys. Rev. D 60 (1999) 064018 [hep-th/9902170] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    S.E. Gralla, A. Ravishankar and P. Zimmerman, in preparation.Google Scholar
  54. [54]
    K. Murata, Conformal weights in the Kerr/CFT correspondence, JHEP 05 (2011) 117 [arXiv:1103.5635] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    F.W. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark, NIST Handbook of Mathematical Functions, 1st ed., Cambridge University Press, New York, NY, U.S.A., (2010).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of ArizonaTucsonU.S.A.

Personalised recommendations