(p, q)-five brane and (p, q)-string solutions, their bound state and its near horizon limit

Open Access
Regular Article - Theoretical Physics

Abstract

We determine (p, q)-string and (p, q)-five brane solutions of type IIB supergravity using SL (2, ℤ)-symmetry of the full type IIB superstring theory. We also determine SL (2, ℤ)-transformed solution corresponding to the bound state of NS5-branes and fundamental strings. Then we analyze its near horizon limit and we show that it leads to the AdS3 × S3 with mixed fluxes.

Keywords

D-branes AdS-CFT Correspondence String Duality 

References

  1. [1]
    E. Bergshoeff, C.M. Hull and T. Ortín, Duality in the type-II superstring effective action, Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [INSPIRE].
  2. [2]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    T. Ortin, Gravity and Strings, Cambridge University Press (2015).Google Scholar
  4. [4]
    J. Polchinski, Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge University Press (2005).Google Scholar
  6. [6]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer (2013).Google Scholar
  7. [7]
    J.H. Schwarz, An SL(2, ℤ) multiplet of type IIB superstrings, Phys. Lett. B 360 (1995) 13 [Erratum ibid. B 364 (1995) 252] [hep-th/9508143] [INSPIRE].
  8. [8]
    J. Kluson, (m,n)-String in (p,q)-String and (p,q)-Five Brane Background, arXiv:1602.08275 [INSPIRE].
  9. [9]
    A. Dabholkar, G.W. Gibbons, J.A. Harvey and F. Ruiz Ruiz, Superstrings and Solitons, Nucl. Phys. B 340 (1990) 33 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    C.G. Callan Jr., J.A. Harvey and A. Strominger, World sheet approach to heterotic instantons and solitons, Nucl. Phys. B 359 (1991) 611 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A.A. Tseytlin, Extreme dyonic black holes in string theory, Mod. Phys. Lett. A 11 (1996) 689 [hep-th/9601177] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J.R. David, G. Mandal and S.R. Wadia, Microscopic formulation of black holes in string theory, Phys. Rept. 369 (2002) 549 [hep-th/0203048] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A. Giveon, D. Kutasov and N. Seiberg, Comments on string theory on AdS 3, Adv. Theor. Math. Phys. 2 (1998) 733 [hep-th/9806194] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    J.M. Maldacena and H. Ooguri, Strings in AdS 3 and SL (2, ℝ) WZW model 1: The spectrum, J. Math. Phys. 42 (2001) 2929 [hep-th/0001053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    J.M. Maldacena, H. Ooguri and J. Son, Strings in AdS 3 and the SL (2, ℝ) WZW model. Part 2. Euclidean black hole, J. Math. Phys. 42 (2001) 2961 [hep-th/0005183] [INSPIRE].
  17. [17]
    J.X. Lu and S. Roy, An SL(2, ℤ) multiplet of type IIB super five-branes, Phys. Lett. B 428 (1998) 289 [hep-th/9802080] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    M. Cederwall and P. K. Townsend, The manifestly Sl (2, ℤ) covariant superstring, JHEP 09 (1997) 003 [hep-th/9709002].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    A.A. Tseytlin, Selfduality of Born-Infeld action and Dirichlet three-brane of type IIB superstring theory, Nucl. Phys. B 469 (1996) 51 [hep-th/9602064] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    Y. Lozano, D-brane dualities as canonical transformations, Phys. Lett. B 399 (1997) 233 [hep-th/9701186] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P.K. Townsend, Membrane tension and manifest IIB S duality, Phys. Lett. B 409 (1997) 131 [hep-th/9705160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E.A. Bergshoeff, M. de Roo, S.F. Kerstan, T. Ort´ın and F. Riccioni, SL(2, ℝ)-invariant IIB Brane Actions, JHEP 02 (2007) 007 [hep-th/0611036] [INSPIRE].
  23. [23]
    A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149 [hep-th/9604035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    D. Bak, S.-J. Rey and H.-U. Yee, Exactly soluble dynamics of (p, q) string near macroscopic fundamental strings, JHEP 12 (2004) 008 [hep-th/0411099] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    D. Kutasov, D-brane dynamics near NS5-branes, hep-th/0405058 [INSPIRE].
  26. [26]
    B. Chen, M. Li and B. Sun, Dbrane near NS5-branes: With electromagnetic field, JHEP 12 (2004) 057 [hep-th/0412022] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    Y. Nakayama, K.L. Panigrahi, S.-J. Rey and H. Takayanagi, Rolling down the throat in NS5-brane background: The case of electrified D-brane, JHEP 01 (2005) 052 [hep-th/0412038] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CF T 2 Correspondence and Integrability, JHEP 11 (2012) 133 [Erratum ibid. 04 (2013) 003] [arXiv:1209.4049] [INSPIRE].
  29. [29]
    B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    B. Hoare and A.A. Tseytlin, Massive S-matrix of AdS 3 × S 3 × T 4 superstring theory with mixed 3-form flux, Nucl. Phys. B 873 (2013) 395 [arXiv:1304.4099] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS 3 × S 3 × T 4 with mixed flux, Nucl. Phys. B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    A.A. Tseytlin, Towards solution of superstring theory in AdS 3 × S 3 with mixed flux, Phys. Part. Nucl. Lett. 11 (2014) 854.CrossRefGoogle Scholar
  33. [33]
    T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefañski Jr., The complete worldsheet S matrix of superstrings on AdS 3 × S 3 × T 4 with mixed three-form flux, Nucl. Phys. B 891 (2015) 570 [arXiv:1410.0866] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  34. [34]
    P. Sundin and L. Wulff, One- and two-loop checks for the AdS 3 × S 3 × T 4 superstring with mixed flux, J. Phys. A 48 (2015) 105402 [arXiv:1411.4662] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    J. Kluson, Integrability of a D1-brane on a group manifold with mixed three-form flux, Phys. Rev. D 93 (2016) 046003 [arXiv:1509.09061] [INSPIRE].ADSGoogle Scholar
  36. [36]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    M. Blau, J.M. Figueroa-O’Farrill and G. Papadopoulos, Penrose limits, supergravity and brane dynamics, Class. Quant. Grav. 19 (2002) 4753 [hep-th/0202111] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and AstrophysicsFaculty of Science, Masaryk UniversityBrnoCzech Republic

Personalised recommendations