Abstract
We measure the effective action in all three phases of 4-dimensional Causal Dynamical Triangulations (CDT) using the transfer matrix method. The transfer matrix is parametrized by the total 3-volume of the CDT universe at a given (discrete) time. We present a simple effective model based on the transfer matrix measured in the de Sitter phase. It allows us to reconstruct the results of full CDT in this phase. We argue that the transfer matrix method is valid not only inside the de Sitter phase (‘C’) but also in the other two phases. A parametrization of the measured transfer matrix/effective action in the ‘A’ and ‘B’ phases is proposed and the relation to phase transitions is explained. We discover a potentially new ‘bifurcation’ phase separating the de Sitter phase (‘C’) and the ‘collapsed’ phase (‘B’).
References
T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].
F. David, Planar diagrams, two-dimensional lattice gravity and surface models, Nucl. Phys. B 257 (1985) 45 [INSPIRE].
V.A. Kazakov, A.A. Migdal and I.K. Kostov, Critical properties of randomly triangulated planar random surfaces, Phys. Lett. B 157 (1985) 295 [INSPIRE].
J. Ambjørn, B. Durhuus and J. Fröhlich, Diseases of triangulated random surface models and possible cures, Nucl. Phys. B 257 (1985) 433 [INSPIRE].
J. Ambjorn, B. Durhuus, J. Frohlich and P. Orland, The appearance of critical dimensions in regulated string theories, Nucl. Phys. B 270 (1986) 45.
D.V. Boulatov, V.A. Kazakov, I.K. Kostov and A.A. Migdal, Analytical and numerical study of the model of dynamically triangulated random surfaces, Nucl. Phys. B 275 (1986) 641 [INSPIRE].
V.G. Knizhnik, A.M. Polyakov and A.B. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 (1988) 819 [INSPIRE].
F. David, Conformal field theories coupled to 2D gravity in the conformal gauge, Mod. Phys. Lett. A 3 (1988) 1651 [INSPIRE].
J. Distler and H. Kawai, Conformal field theory and 2D quantum gravity or who’s afraid of Joseph Liouville?, Nucl. Phys. B 321 (1989) 509 [INSPIRE].
J. Ambjørn and K.N. Anagnostopoulos, Quantum geometry of 2D gravity coupled to unitary matter, Nucl. Phys. B 497 (1997) 445 [hep-lat/9701006] [INSPIRE].
J. Ambjørn and S. Varsted, Entropy estimate in three-dimensional simplicial quantum gravity, Phys. Lett. B 266 (1991) 285 [INSPIRE].
M.E. Agishtein and A.A. Migdal, Three-dimensional quantum gravity as dynamical triangulation, Mod. Phys. Lett. A 6 (1991) 1863 [Erratum ibid. A 6 (1991) 2555] [INSPIRE].
D.V. Boulatov and A. Krzywicki, On the phase diagram of three-dimensional simplicial quantum gravity, Mod. Phys. Lett. A 6 (1991) 3005 [INSPIRE].
J. Ambjørn, D.V. Boulatov, A. Krzywicki and S. Varsted, The vacuum in three-dimensional simplicial quantum gravity, Phys. Lett. B 276 (1992) 432 [INSPIRE].
J. Ambjørn and S. Varsted, Three-dimensional simplicial quantum gravity, Nucl. Phys. B 373 (1992) 557 [INSPIRE].
J. Ambjørn and J. Jurkiewicz, Four-dimensional simplicial quantum gravity, Phys. Lett. B 278 (1992) 42 [INSPIRE].
M.E. Agishtein and A.A. Migdal, Simulations of four-dimensional simplicial quantum gravity, Mod. Phys. Lett. A 7 (1992) 1039 [INSPIRE].
S. Bilke et al., 4 − D simplicial quantum gravity interacting with gauge matter fields, Phys. Lett. B 418 (1998) 266 [hep-lat/9710077] [INSPIRE].
S. Bilke et al., 4 − D simplicial quantum gravity: matter fields and the corresponding effective action, Phys. Lett. B 432 (1998) 279 [hep-lat/9804011] [INSPIRE].
J. Ambjørn, K.N. Anagnostopoulos and J. Jurkiewicz, Abelian gauge fields coupled to simplicial quantum gravity, JHEP 08 (1999) 016 [hep-lat/9907027] [INSPIRE].
S. Horata, H.S. Egawa, N. Tsuda and T. Yukawa, Phase structure of four-dimensional simplicial quantum gravity with a U(1) gauge field, Prog. Theor. Phys. 106 (2001) 1037 [hep-lat/0004021] [INSPIRE].
P. Bialas, Z. Burda, A. Krzywicki and B. Petersson, Focusing on the fixed point of 4D simplicial gravity, Nucl. Phys. B 472 (1996) 293 [hep-lat/9601024] [INSPIRE].
B.V. de Bakker, Further evidence that the transition of 4D dynamical triangulation is first order, Phys. Lett. B 389 (1996) 238 [hep-lat/9603024] [INSPIRE].
S. Catterall, R. Renken and J.B. Kogut, Singular structure in 4D simplicial gravity, Phys. Lett. B 416 (1998) 274 [hep-lat/9709007] [INSPIRE].
J. Ambjørn and R. Loll, Nonperturbative Lorentzian quantum gravity, causality and topology change, Nucl. Phys. B 536 (1998) 407 [hep-th/9805108] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, A nonperturbative lorentzian path integral for gravity, Phys. Rev. Lett. 85 (2000) 924 [hep-th/0002050] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Nonperturbative 3D lorentzian quantum gravity, Phys. Rev. D 64 (2001) 044011 [hep-th/0011276] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Dynamically triangulating lorentzian quantum gravity, Nucl. Phys. B 610 (2001) 347 [hep-th/0105267] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Nonperturbative quantum gravity, Phys. Rept. 519 (2012) 127 [arXiv:1203.3591] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Quantum gravity as sum over spacetimes, Lect. Notes Phys. 807 (2010) 59 [arXiv:0906.3947] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, CDT — An entropic theory of quantum gravity, arXiv:1007.2560 [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, The Universe from scratch, Contemp. Phys. 47 (2006) 103 [hep-th/0509010] [INSPIRE].
R. Loll, The emergence of spacetime or quantum gravity on your desktop, Class. Quant. Grav. 25 (2008) 114006 [arXiv:0711.0273] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].
J. Ambjørn, A. Görlich, S. Jordan, J. Jurkiewicz and R. Loll, CDT meets Hořava-Lifshitz gravity, Phys. Lett. B 690 (2010) 413 [arXiv:1002.3298] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Emergence of a 4D world from causal quantum gravity, Phys. Rev. Lett. 93 (2004) 131301 [hep-th/0404156] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Semiclassical universe from first principles, Phys. Lett. B 607 (2005) 205 [hep-th/0411152] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, Reconstructing the universe, Phys. Rev. D 72 (2005) 064014 [hep-th/0505154] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Planckian birth of the quantum de Sitter universe, Phys. Rev. Lett. 100 (2008) 091304 [arXiv:0712.2485] [INSPIRE].
J. Ambjørn, J. Jurkiewicz and R. Loll, The self-organized de Sitter universe, Int. J. Mod. Phys. D 17 (2009) 2515 [arXiv:0806.0397] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, Geometry of the quantum universe, Phys. Lett. B 690 (2010) 420 [arXiv:1001.4581] [INSPIRE].
J. Ambjørn, A. Görlich, J. Jurkiewicz and R. Loll, The nonperturbative quantum de Sitter universe, Phys. Rev. D 78 (2008) 063544 [arXiv:0807.4481] [INSPIRE].
J. Ambjørn, et al., The semiclassical limit of causal dynamical triangulations, Nucl. Phys. B 849 (2011) 144 [arXiv:1102.3929] [INSPIRE].
J. Ambjørn, J. Gizbert-Studnicki, A. Görlich and J. Jurkiewicz, The transfer matrix in four-dimensional CDT, JHEP 09 (2012) 017 [arXiv:1205.3791] [INSPIRE].
J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, A second-order phase transition in CDT, Phys. Rev. Lett. 107 (2011) 211303 [arXiv:1108.3932] [INSPIRE].
J. Ambjørn, S. Jordan, J. Jurkiewicz and R. Loll, Second- and first-order phase transitions in CDT, Phys. Rev. D 85 (2012) 124044 [arXiv:1205.1229] [INSPIRE].
L. Bogacz, Z. Burda and B. Waclaw, Quantum widening of CDT universe, Phys. Rev. D 86 (2012) 104015 [arXiv:1204.1356] [INSPIRE].
J. Mielczarek, Asymptotic silence in loop quantum cosmology, AIP Conf. Proc. 1514 (2012) 81 [arXiv:1212.3527] [INSPIRE].
P. Hořava, Quantum gravity at a Lifshitz point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE].
P. Hořava and C.M. Melby-Thompson, General covariance in quantum gravity at a Lifshitz point, Phys. Rev. D 82 (2010) 064027 [arXiv:1007.2410] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1403.5940
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Ambjørn, J., Gizbert-Studnicki, J., Görlich, A. et al. The effective action in 4-dim CDT. The transfer matrix approach. J. High Energ. Phys. 2014, 34 (2014). https://doi.org/10.1007/JHEP06(2014)034
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2014)034
Keywords
- Models of Quantum Gravity
- Random Systems
- Lattice Models of Gravity