Comments about Hamiltonian formulation of non-linear massive gravity with Stückelberg fields

Article

Abstract

We perform the Hamiltonian analysis of some form of the non-linear massive gravity action that is formulated in the Stückelberg formalism. Following seminal analysis performed in arXiv:1203.5283 [hep-th] we find that this theory possesses one primary constraint which could eliminate one additional mode in this theory. We performed the explicit Hamiltonian analysis of two dimensional non-linear massive gravity and we found that this is theory free from the ghosts.

Keywords

Models of Quantum Gravity Classical Theories of Gravity 

References

  1. [1]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Modified gravity and cosmology, Phys. Rept. 513 (2012) 1 [arXiv:1106.2476] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    V. Rubakov and P. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  7. [7]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  10. [10]
    M. Mirbabayi, A proof of ghost freedom in de Rham-Gabadadze-Tolley massive gravity, arXiv:1112.1435 [INSPIRE].
  11. [11]
    S. Sjors and E. Mortsell, Spherically symmetric solutions in massive gravity and constraints from galaxies, arXiv:1111.5961 [INSPIRE].
  12. [12]
    C. Burrage, C. de Rham, L. Heisenberg and A.J. Tolley, Chronology protection in Galileon models and massive gravity, arXiv:1111.5549 [INSPIRE].
  13. [13]
    A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Cosmological perturbations of self-accelerating universe in nonlinear massive gravity, JCAP 03 (2012) 006 [arXiv:1111.4107] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze and A. Tolley, On black holes in massive gravity, Phys. Rev. D 85 (2012) 044024 [arXiv:1111.3613] [INSPIRE].ADSGoogle Scholar
  15. [15]
    D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, FRW cosmology in ghost free massive gravity, JHEP 03 (2012) 067 [Erratum ibid. 06 (2012) 020] [arXiv:1111.1983] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Kluson, Hamiltonian analysis of 1 + 1 dimensional massive gravity, Phys. Rev. D 85 (2012) 044010 [arXiv:1110.6158] [INSPIRE].ADSGoogle Scholar
  17. [17]
    D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, Spherically symmetric solutions in ghost-free massive gravity, Phys. Rev. D 85 (2012) 024044 [arXiv:1110.4967] [INSPIRE].ADSGoogle Scholar
  18. [18]
    M. Mohseni, Exact plane gravitational waves in the de Rham-Gabadadze-Tolley model of massive gravity, Phys. Rev. D 84 (2011) 064026 [arXiv:1109.4713] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].CrossRefGoogle Scholar
  20. [20]
    S. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    S. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    G. D’Amico et al., Massive cosmologies, Phys. Rev. D 84 (2011) 124046 [arXiv:1108.5231] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C. de Rham, G. Gabadadze and A.J. Tolley, Helicity decomposition of ghost-free massive gravity, JHEP 11 (2011) 093 [arXiv:1108.4521] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    C. de Rham, G. Gabadadze and A.J. Tolley, Comments on (super)luminality, arXiv:1107.0710 [INSPIRE].
  25. [25]
    A. Gruzinov and M. Mirbabayi, Stars and black holes in massive gravity, Phys. Rev. D 84 (2011) 124019 [arXiv:1106.2551] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Koyama, G. Niz and G. Tasinato, Strong interactions and exact solutions in non-linear massive gravity, Phys. Rev. D 84 (2011) 064033 [arXiv:1104.2143] [INSPIRE].ADSGoogle Scholar
  27. [27]
    T. Nieuwenhuizen, Exact Schwarzschild-de Sitter black holes in a family of massive gravity models, Phys. Rev. D 84 (2011) 024038 [arXiv:1103.5912] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Koyama, G. Niz and G. Tasinato, Analytic solutions in non-linear massive gravity, Phys. Rev. Lett. 107 (2011) 131101 [arXiv:1103.4708] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    S. Hassan, A. Schmidt-May and M. von Strauss, Proof of consistency of nonlinear massive gravity in the Stückelberg formulation, arXiv:1203.5283 [INSPIRE].
  30. [30]
    C. de Rham, G. Gabadadze and A. Tolley, Ghost free massive gravity in the Stückelberg language, Phys. Lett. B 711 (2012) 190 [arXiv:1107.3820] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J. Kluson, Note about Hamiltonian structure of non-linear massive gravity, JHEP 01 (2012) 013 [arXiv:1109.3052] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  32. [32]
    S. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    A. Golovnev, On the Hamiltonian analysis of non-linear massive gravity, Phys. Lett. B 707 (2012) 404 [arXiv:1112.2134] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R.L. Arnowitt, S. Deser and C.W. Misner, The dynamics of general relativity, gr-qc/0405109 [INSPIRE].
  35. [35]
    E. Gourgoulhon, 3 + 1 formalism and bases of numerical relativity, gr-qc/0703035 [INSPIRE].
  36. [36]
    K. Kuchar, Geometrodynamics regaineda Lagrangian approach, J. Math. Phys. 15 (1974) 708 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    C. Isham and K. Kuchar, Representations of space-time diffeomorphisms. 1. Canonical parametrized field theories, Annals Phys. 164 (1985) 288 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  38. [38]
    C. Isham and K. Kuchar, Representations of space-time diffeomorphisms. 2. Canonical geometrodynamics, Annals Phys. 164 (1985) 316 [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  39. [39]
    S. Hojman, K. Kuchar and C. Teitelboim, Geometrodynamics regained, Annals Phys. 96 (1976) 88 [INSPIRE].MathSciNetADSCrossRefMATHGoogle Scholar
  40. [40]
    A.H. Chamseddine and M.S. Volkov, Cosmological solutions with massive gravitons, Phys. Lett. B 704 (2011) 652 [arXiv:1107.5504] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory, JHEP 01 (2012) 035 [arXiv:1110.6153] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations