Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Axion domain walls, small instantons, and non-invertible symmetry breaking

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 30 May 2024
  • Volume 2024, article number 325, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Axion domain walls, small instantons, and non-invertible symmetry breaking
Download PDF
  • Clay Córdova1,2,
  • Sungwoo Hong3 &
  • Lian-Tao Wang1,2 
  • 302 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

Non-invertible global symmetry often predicts degeneracy in axion potentials and carries important information about the global form of the gauge group. When these symmetries are spontaneously broken they can lead to the formation of stable axion domain wall networks which support topological degrees of freedom on their worldvolume. Such non-invertible symmetries can be broken by embedding into appropriate larger UV gauge groups where small instanton contributions lift the vacuum degeneracy, and provide a possible solution to the domain wall problem. We explain these ideas in simple illustrative examples and then apply them to the Standard Model, whose gauge algebra and matter content are consistent with several possible global structures. Each possible global structure leads to different selection rules on the axion couplings, and various UV completions of the Standard Model lead to more specific relations. As a proof of principle, we also present an example of a UV embedding of the Standard Model which can solve the axion domain wall problem. The formation and annihilation of the long-lived axion domain walls can lead to observables, such as gravitational wave signals. Observing such signals, in combination with the axion coupling measurements, can provide valuable insight into the global structure of the Standard Model, as well as its UV completion.

Article PDF

Download to read the full article text

Similar content being viewed by others

Axion monodromy and the weak gravity conjecture

Article Open access 26 April 2016

Axion periodicity and coupling quantization in the presence of mixing

Article Open access 13 May 2020

The axion quality problem: global symmetry breaking and wormholes

Article Open access 07 January 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. O. Aharony, N. Seiberg and Y. Tachikawa, Reading between the lines of four-dimensional gauge theories, JHEP 08 (2013) 115 [arXiv:1305.0318] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. E. Witten, Supersymmetric index in four-dimensional gauge theories, Adv. Theor. Math. Phys. 5 (2002) 841 [hep-th/0006010] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  3. D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, Time Reversal, and Temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the Space of Coupling Constants and Their Dynamical Applications II, SciPost Phys. 8 (2020) 002 [arXiv:1905.13361] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. I. García-Etxebarria and M. Montero, Dai-Freed anomalies in particle physics, JHEP 08 (2019) 003 [arXiv:1808.00009] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Davighi, B. Gripaios and N. Lohitsiri, Global anomalies in the Standard Model(s) and Beyond, JHEP 07 (2020) 232 [arXiv:1910.11277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. P.-S. Hsin and H.T. Lam, Discrete theta angles, symmetries and anomalies, SciPost Phys. 10 (2021) 032 [arXiv:2007.05915] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. M.M. Anber and E. Poppitz, Nonperturbative effects in the Standard Model with gauged 1-form symmetry, JHEP 12 (2021) 055 [arXiv:2110.02981] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Córdova, T.T. Dumitrescu, K. Intriligator and S.-H. Shao, Snowmass White Paper: Generalized Symmetries in Quantum Field Theory and Beyond, in the proceedings of the Snowmass 2021, Seattle, U.S.A., July 17–26 (2022) [arXiv:2205.09545] [INSPIRE].

  11. T.D. Brennan and S. Hong, Introduction to Generalized Global Symmetries in QFT and Particle Physics, arXiv:2306.00912 [INSPIRE].

  12. S. Schafer-Nameki, ICTP lectures on (non-)invertible generalized symmetries, Phys. Rept. 1063 (2024) 1 [arXiv:2305.18296] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. L. Bhardwaj et al., Lectures on generalized symmetries, Phys. Rept. 1051 (2024) 1 [arXiv:2307.07547] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. S.-H. Shao, What’s Done Cannot Be Undone: TASI Lectures on Non-Invertible Symmetries, arXiv:2308.00747 [INSPIRE].

  15. D. Tong, Line Operators in the Standard Model, JHEP 07 (2017) 104 [arXiv:1705.01853] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. Y. Hidaka, M. Nitta and R. Yokokura, Higher-form symmetries and 3-group in axion electrodynamics, Phys. Lett. B 808 (2020) 135672 [arXiv:2006.12532] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  17. Y. Hidaka, M. Nitta and R. Yokokura, Global 3-group symmetry and ’t Hooft anomalies in axion electrodynamics, JHEP 01 (2021) 173 [arXiv:2009.14368] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. T.D. Brennan and C. Córdova, Axions, higher-groups, and emergent symmetry, JHEP 02 (2022) 145 [arXiv:2011.09600] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. Y. Choi, H.T. Lam and S.-H. Shao, Non-invertible Gauss law and axions, JHEP 09 (2023) 067 [arXiv:2212.04499] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Yokokura, Non-invertible symmetries in axion electrodynamics, arXiv:2212.05001 [INSPIRE].

  21. T.D. Brennan, S. Hong and L.-T. Wang, Coupling a Cosmic String to a TQFT, JHEP 03 (2024) 145 [arXiv:2302.00777] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. Y. Choi, H.T. Lam and S.-H. Shao, Noninvertible Global Symmetries in the Standard Model, Phys. Rev. Lett. 129 (2022) 161601 [arXiv:2205.05086] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Córdova and K. Ohmori, Noninvertible Chiral Symmetry and Exponential Hierarchies, Phys. Rev. X 13 (2023) 011034 [arXiv:2205.06243] [INSPIRE].

    Google Scholar 

  24. Y. Choi et al., Noninvertible duality defects in 3 + 1 dimensions, Phys. Rev. D 105 (2022) 125016 [arXiv:2111.01139] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. J. Kaidi, K. Ohmori and Y. Zheng, Kramers-Wannier-like Duality Defects in (3 + 1)D Gauge Theories, Phys. Rev. Lett. 128 (2022) 111601 [arXiv:2111.01141] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. Y. Choi, H.T. Lam and S.-H. Shao, Noninvertible Time-Reversal Symmetry, Phys. Rev. Lett. 130 (2023) 131602 [arXiv:2208.04331] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. P. Niro, K. Roumpedakis and O. Sela, Exploring non-invertible symmetries in free theories, JHEP 03 (2023) 005 [arXiv:2209.11166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Córdova, S. Hong, S. Koren and K. Ohmori, Neutrino Masses from Generalized Symmetry Breaking, arXiv:2211.07639 [INSPIRE].

  29. C. Córdova and K. Ohmori, Quantum Duality in Electromagnetism and the Fine-Structure Constant, arXiv:2307.12927 [INSPIRE].

  30. C. Córdova, S. Hong and S. Koren, Non-Invertible Peccei-Quinn Symmetry and the Massless Quark Solution to the Strong CP Problem, arXiv:2402.12453 [INSPIRE].

  31. P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156 [INSPIRE].

  32. S. Chang, C. Hagmann and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev. D 59 (1999) 023505 [hep-ph/9807374] [INSPIRE].

  33. T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Production of dark matter axions from collapse of string-wall systems, Phys. Rev. D 85 (2012) 105020 [Erratum ibid. 86 (2012) 089902] [arXiv:1202.5851] [INSPIRE].

  34. Y.B. Zeldovich, I.Y. Kobzarev and L.B. Okun, Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3 [INSPIRE].

  35. M. Reece, TASI Lectures: (No) Global Symmetries to Axion Physics, PoS TASI2022 (2024) 008 [arXiv:2304.08512] [INSPIRE].

  36. J.J. Fan, K. Fraser, M. Reece and J. Stout, Axion Mass from Magnetic Monopole Loops, Phys. Rev. Lett. 127 (2021) 131602 [arXiv:2105.09950] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. B. Holdom and M.E. Peskin, Raising the Axion Mass, Nucl. Phys. B 208 (1982) 397 [INSPIRE].

  38. B. Holdom, Strong QCD at High-energies and a Heavy Axion, Phys. Lett. B 154 (1985) 316 [Erratum ibid. 156 (1985) 452] [INSPIRE].

  39. J.M. Flynn and L. Randall, A Computation of the Small Instanton Contribution to the Axion Potential, Nucl. Phys. B 293 (1987) 731 [INSPIRE].

  40. E. Poppitz and Y. Shirman, The Strength of small instanton amplitudes in gauge theories with compact extra dimensions, JHEP 07 (2002) 041 [hep-th/0204075] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Gherghetta, V.V. Khoze, A. Pomarol and Y. Shirman, The Axion Mass from 5D Small Instantons, JHEP 03 (2020) 063 [arXiv:2001.05610] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Agrawal and K. Howe, Factoring the Strong CP Problem, JHEP 12 (2018) 029 [arXiv:1710.04213] [INSPIRE].

    Article  ADS  Google Scholar 

  43. P. Agrawal and K. Howe, A Flavorful Factoring of the Strong CP Problem, JHEP 12 (2018) 035 [arXiv:1712.05803] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Csáki, M. Ruhdorfer and Y. Shirman, UV Sensitivity of the Axion Mass from Instantons in Partially Broken Gauge Groups, JHEP 04 (2020) 031 [arXiv:1912.02197] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23 (1981) 852 [INSPIRE].

  46. G.B. Gelmini, M. Gleiser and E.W. Kolb, Cosmology of Biased Discrete Symmetry Breaking, Phys. Rev. D 39 (1989) 1558 [INSPIRE].

  47. S.E. Larsson, S. Sarkar and P.L. White, Evading the cosmological domain wall problem, Phys. Rev. D 55 (1997) 5129 [hep-ph/9608319] [INSPIRE].

  48. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  49. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

  50. S. Ghigna, M. Lusignoli and M. Roncadelli, Instability of the invisible axion, Phys. Lett. B 283 (1992) 278 [INSPIRE].

  51. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].

  52. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M. Dine, Problems of naturalness: Some lessons from string theory, in the proceedings of the Conference on Topics in Quantum Gravity, Cincinnati, U.S.A., April 03–04 (1992) [hep-th/9207045] [INSPIRE].

  54. R. Holman et al., Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

  55. B.A. Dobrescu, The Strong CP problem versus Planck scale physics, Phys. Rev. D 55 (1997) 5826 [hep-ph/9609221] [INSPIRE].

  56. T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion cosmology with long-lived domain walls, JCAP 01 (2013) 001 [arXiv:1207.3166] [INSPIRE].

    ADS  Google Scholar 

  57. P. Agrawal, M. Nee and M. Reig, Axion couplings in grand unified theories, JHEP 10 (2022) 141 [arXiv:2206.07053] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Preskill, S.P. Trivedi, F. Wilczek and M.B. Wise, Cosmology and broken discrete symmetry, Nucl. Phys. B 363 (1991) 207 [INSPIRE].

  59. M. Gleiser and R. Roberts, Gravitational waves from collapsing vacuum domains, Phys. Rev. Lett. 81 (1998) 5497 [astro-ph/9807260] [INSPIRE].

  60. T. Hiramatsu, M. Kawasaki and K. Saikawa, Gravitational Waves from Collapsing Domain Walls, JCAP 05 (2010) 032 [arXiv:1002.1555] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Kawasaki and K. Saikawa, Study of gravitational radiation from cosmic domain walls, JCAP 09 (2011) 008 [arXiv:1102.5628] [INSPIRE].

    Article  ADS  Google Scholar 

  62. K. Saikawa, A review of gravitational waves from cosmic domain walls, Universe 3 (2017) 40 [arXiv:1703.02576] [INSPIRE].

    Article  ADS  Google Scholar 

  63. H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

  64. H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193 [INSPIRE].

  65. F. Gursey, P. Ramond and P. Sikivie, A Universal Gauge Theory Model Based on E6, Phys. Lett. B 60 (1976) 177 [INSPIRE].

  66. J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [INSPIRE].

  67. K.S. Babu, X.-G. He and S. Pakvasa, Neutrino Masses and Proton Decay Modes in SU(3) × SU(3) × SU(3) Trinification, Phys. Rev. D 33 (1986) 763 [INSPIRE].

  68. M. van Beest et al., Monopoles, Scattering, and Generalized Symmetries, arXiv:2306.07318 [INSPIRE].

  69. T.D. Brennan, A New Solution to the Callan Rubakov Effect, arXiv:2309.00680 [INSPIRE].

  70. Y. Choi, M. Forslund, H.T. Lam and S.-H. Shao, Quantization of Axion-Gauge Couplings and Noninvertible Higher Symmetries, Phys. Rev. Lett. 132 (2024) 121601 [arXiv:2309.03937] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  71. M. Reece, Axion-gauge coupling quantization with a twist, JHEP 10 (2023) 116 [arXiv:2309.03939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. P. Agrawal and A. Platschorre, The monodromic axion-photon coupling, JHEP 01 (2024) 169 [arXiv:2309.03934] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to T. D. Brennan, S. Koren, and S. H. Shao for helpful discussions. S. H. would like to thank T. D. Brennan for related collaborations. We also thank the authors of [70] for sharing a draft of their work prior to submission. We thank the Aspen Center for Physics (supported by a National Science Foundation grant PHY-2210452) for the opportunity to participate in a summer workshop in 2023, during which part of this work was finished. The work of C.C. is supported by DOE grant DE-SC0024367, by the Simons Collaboration on Global Categorical Symmetries, and by the Sloan Foundation. The work of S.H. is supported by the National Research Foundation of Korea (NRF) Grant RS-2023-00211732. The work of L.T.W. is supported by DOE grant DE-SC-0013642.

Author information

Authors and Affiliations

  1. Department of Physics, Kadanoff Center for Theoretical Physics, University of Chicago, 933 E 56th St, Chicago, IL, USA

    Clay Córdova & Lian-Tao Wang

  2. Enrico Fermi Institute, University of Chicago, 933 E 56th St, Chicago, IL, USA

    Clay Córdova & Lian-Tao Wang

  3. Department of Physics, KAIST, Daejeon, 34141, Korea

    Sungwoo Hong

Authors
  1. Clay Córdova
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Sungwoo Hong
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Lian-Tao Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Clay Córdova.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2309.05636

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Córdova, C., Hong, S. & Wang, LT. Axion domain walls, small instantons, and non-invertible symmetry breaking. J. High Energ. Phys. 2024, 325 (2024). https://doi.org/10.1007/JHEP05(2024)325

Download citation

  • Received: 31 March 2024

  • Accepted: 29 April 2024

  • Published: 30 May 2024

  • DOI: https://doi.org/10.1007/JHEP05(2024)325

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Anomalies in Field and String Theories
  • Axions and ALPs
  • Cosmological models
  • Solitons Monopoles and Instantons
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature