Abstract
Results are presented for the medium-induced, soft coherent radiation spectrum for all 2 → 2 partonic channels in QCD, at leading-order in αs but beyond leading logarithmic accuracy. The general formula is valid in the full kinematic range of the underlying process, and reduces to previous results in special cases. The soft gluon radiation spectrum is expressed in terms of the color density matrix specific to each channel, quantifying the entanglement between the color components of the 2 → 2 production amplitude. Beyond the leading logarithm, the spectrum depends explicitly on the off-diagonal elements of this matrix, owing to the soft gluon’s ability to probe the internal color structure of the parton pair.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
F. Arleo, S. Peigné and T. Sami, Revisiting scaling properties of medium-induced gluon radiation, Phys. Rev. D 83 (2011) 114036 [arXiv:1006.0818] [INSPIRE].
F. Arleo, R. Kolevatov, and S. Peigné Coherent medium-induced gluon radiation in hard forward 1 → 1 partonic processes, Phys. Rev. D 93 (2016) 014006 [arXiv:1402.1671] [INSPIRE].
S. Munier, S. Peigné and E. Petreska, Medium-induced gluon radiation in hard forward parton scattering in the saturation formalism, Phys. Rev. D 95 (2017) 014014 [arXiv:1603.01028] [INSPIRE].
T. Liou and A.H. Mueller, Parton energy loss in high energy hard forward processes in proton-nucleus collisions, Phys. Rev. D 89 (2014) 074026 [arXiv:1402.1647] [INSPIRE].
S. Peigné and R. Kolevatov, Medium-induced soft gluon radiation in forward dijet production in relativistic proton-nucleus collisions, JHEP 01 (2015) 141 [arXiv:1405.4241] [INSPIRE].
R. Baier et al., Radiative energy loss and p⊥-broadening of high energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
R. Baier et al., Radiative energy loss of high energy quarks and gluons in a finite-volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
B.G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
B.G. Zakharov, Radiative energy loss of high-energy quarks in finite-size nuclear matter and quark-gluon plasma, JETP Lett. 65 (1997) 615 [hep-ph/9704255] [INSPIRE].
R. Baier, Y.L. Dokshitzer, A.H. Mueller and D. Schiff, Medium-induced radiative energy loss; equivalence between the BDMPS and Zakharov formalisms, Nucl. Phys. B 531 (1998) 403 [hep-ph/9804212] [INSPIRE].
F. Arleo and S. Peigné, J/ψ Suppression in p-A Collisions from Parton Energy Loss in Cold QCD Matter, Phys. Rev. Lett. 109 (2012) 122301 [arXiv:1204.4609] [INSPIRE].
F. Arleo and S. Peigné, Heavy-quarkonium suppression in p-A collisions from parton energy loss in cold QCD matter, JHEP 03 (2013) 122 [arXiv:1212.0434] [INSPIRE].
F. Arleo, R. Kolevatov, S. Peigné and M. Rustamova, Centrality and p⊥ dependence of J/ψ suppression in proton-nucleus collisions from parton energy loss, JHEP 05 (2013) 155 [arXiv:1304.0901] [INSPIRE].
F. Arleo and S. Peigné, Quenching of Light Hadron Spectra in p-A Collisions from Fully Coherent Energy Loss, Phys. Rev. Lett. 125 (2020) 032301 [arXiv:2003.01987] [INSPIRE].
F. Arleo, F. Cougoulic and S. Peigné, Fully coherent energy loss effects on light hadron production in pA collisions, JHEP 09 (2020) 190 [arXiv:2003.06337] [INSPIRE].
F. Arleo, G. Jackson and S. Peigné, Impact of fully coherent energy loss on heavy meson production in pA collisions, JHEP 01 (2022) 164 [arXiv:2107.05871] [INSPIRE].
F. Arleo, G. Jackson and S. Peigné, Depletion of atmospheric neutrino fluxes from parton energy loss, Phys. Lett. B 835 (2022) 137541 [arXiv:2112.10791] [INSPIRE].
F. Arleo and S. Peigné, Quarkonium suppression in heavy-ion collisions from coherent energy loss in cold nuclear matter, JHEP 10 (2014) 073 [arXiv:1407.5054] [INSPIRE].
H. Paukkunen and P. Zurita, PDF reweighting in the Hessian matrix approach, JHEP 12 (2014) 100 [arXiv:1402.6623] [INSPIRE].
W.T. Giele and S. Keller, Implications of hadron collider observables on parton distribution function uncertainties, Phys. Rev. D 58 (1998) 094023 [hep-ph/9803393] [INSPIRE].
R.D. Ball et al., Reweighting and unweighting of parton distributions and the LHC W lepton asymmetry data, Nucl. Phys. B 855 (2012) 608 [arXiv:1108.1758] [INSPIRE].
M.L. Mangano, Two lectures on heavy quark production in hadronic collisions, Proc. Int. Sch. Phys. Fermi 137 (1998) 95 [hep-ph/9711337] [INSPIRE].
M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable-flavor number scheme versus fixed-order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].
P. Cvitanović, Group Theory: Birdtracks, Lie’s, and Exceptional Groups, Princeton University Press (2008) [https://doi.org/10.1515/9781400837670] [INSPIRE].
Yu. L. Dokshitzer, Perturbative QCD (and beyond), in the proceedings of the Strong Interactions Study Days Kloster Banz, Germany, October 10–12 (1995) [INSPIRE] [https://doi.org/10.1007/BFb0105858].
S. Keppeler, Birdtracks for SU(N), SciPost Phys. Lect. Notes 3 (2018) 1 [arXiv:1707.07280] [INSPIRE].
S. Peigné, Introduction to color in QCD: Initiation to the birdtrack pictorial technique, in the proceedings of the 6th Chilean School of High Energy Physics, Valparaiso, Chile, January 16–19 (2023) [arXiv:2302.07574] [INSPIRE].
B.L. Combridge, J. Kripfganz and J. Ranft, Hadron production at large transverse momentum and QCD, Phys. Lett. B 70 (1977) 234 [INSPIRE].
R. Cutler and D. Sivers, Quantum chromodynamic gluon contributions to large-p⊥ reactions, Phys. Rev. D 17 (1978) 196 [INSPIRE].
J. Kuipers, T. Ueda, J.A.M. Vermaseren and J. Vollinga, FORM version 4.0, Comput. Phys. Commun. 184 (2013) 1453 [arXiv:1203.6543] [INSPIRE].
P. Nogueira, Automatic Feynman Graph Generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
L.D. Landau and E.M. Lifshitz, Quantum Mechanics, Butterworth-Heinemann (1981) [https://doi.org/10.1016/C2013-0-05654-X].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Non-Abelian Energy Loss at Finite Opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].
M. Gyulassy, P. Lévai and I. Vitev, Jet quenching in thin quark-gluon plasmas I: formalism, Nucl. Phys. B 571 (2000) 197 [hep-ph/9907461] [INSPIRE].
F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].
F. Cougoulic and S. Peigné, Nuclear p⊥-broadening of an energetic parton pair, JHEP 05 (2018) 203 [arXiv:1712.01953] [INSPIRE].
J. Botts and G. Sterman, Hard elastic scattering in QCD: Leading behavior, Nucl. Phys. B 325 (1989) 62 [INSPIRE].
M.G. Sotiropoulos and G. Sterman, Color exchange in near-forward hard elastic scattering, Nucl. Phys. B 419 (1994) 59 [hep-ph/9310279] [INSPIRE].
H. Contopanagos, E. Laenen and G. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].
N. Kidonakis, G. Oderda and G.F. Sterman, Evolution of color exchange in QCD hard scattering, Nucl. Phys. B 531 (1998) 365 [hep-ph/9803241] [INSPIRE].
G. Oderda, Dijet rapidity gaps in photoproduction from perturbative QCD, Phys. Rev. D 61 (2000) 014004 [hep-ph/9903240] [INSPIRE].
R. Bonciani, S. Catani, M.L. Mangano and P. Nason, Sudakov resummation of multiparton QCD cross sections, Phys. Lett. B 575 (2003) 268 [hep-ph/0307035] [INSPIRE].
R.B. Appleby, Rapidity gap physics at contemporary colliders, Ph.D. thesis, University of Manchester, Manchester M13 9PL, U.K. (2003) [hep-ph/0311210] [INSPIRE].
A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].
A. Kyrieleis and M.H. Seymour, The colour evolution of the process qq → qqg, JHEP 01 (2006) 085 [hep-ph/0510089] [INSPIRE].
Yu.L. Dokshitzer and G. Marchesini, Hadron collisions and the fifth form factor, Phys. Lett. B 631 (2005) 118 [hep-ph/0508130 [INSPIRE].
Yu.L. Dokshitzer and G. Marchesini, Soft gluons at large angles in hadron collisions, JHEP 01 (2006) 007 [hep-ph/0509078] [INSPIRE].
M. Sjödahl, Color evolution of 2 → 3 processes, JHEP 12 (2008) 083 [arXiv:0807.0555] [INSPIRE].
J.R. Forshaw, A. Kyrieleis and M.H. Seymour, Super-leading logarithms in non-global observables in QCD: colour basis independent calculation, JHEP 09 (2008) 128 [arXiv:0808.1269] [INSPIRE].
P. Arnold, G.D. Moore and L.G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
M. Gyulassy and X.-n. Wang, Multiple collisions and induced gluon bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].
P. Arnold, Simple formula for high-energy gluon bremsstrahlung in a finite, expanding medium, Phys. Rev. D 79 (2009) 065025 [arXiv:0808.2767] [INSPIRE].
J.H. Isaksen, A. Takacs and K. Tywoniuk, A unified picture of medium-induced radiation, JHEP 02 (2023) 156 [arXiv:2206.02811] [INSPIRE].
M.H. Seymour, Symmetry of anomalous dimension matrices for colour evolution of hard scattering processes, JHEP 10 (2005) 029 [hep-ph/0508305] [INSPIRE].
M.H. Seymour and M. Sjödahl, Symmetry of anomalous dimension matrices explained, JHEP 12 (2008) 066 [arXiv:0810.5756] [INSPIRE].
Acknowledgments
S. P. and K. W. were funded by the Agence Nationale de la Recherche (ANR) under grant No. ANR-18-CE31-0024 (COLDLOSS). G. J. was funded by the U.S. Department of Energy (DOE), under grant No. DE-FG02-00ER41132, and now by the ANR under grant No. ANR-22-CE31-0018 (AUTOTHERM). We thank Paul Caucal for fruitful discussions on the different nature of FCEL and small-x evolution effects.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2312.11650
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Jackson, G., Peigné, S. & Watanabe, K. Coherent gluon radiation: beyond leading-log accuracy. J. High Energ. Phys. 2024, 207 (2024). https://doi.org/10.1007/JHEP05(2024)207
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2024)207