Abstract
Motivated by precision computations of neutrino decoupling at MeV temperatures, we show how QED corrections to the thermal neutrino interaction rate can be related to the electron-positron spectral function as well as an effective \(\overline{\nu }\nu \gamma \) vertex. The spectral function is needed both in a timelike and in a spacelike domain, and for both of its physical polarization states (transverse and longitudinal with respect to spatial momentum). Incorporating an NLO evaluation of this spectral function, an estimate of the \(\overline{\nu }\nu \gamma \) vertex, and HTL resummation of scatterings mediated by soft Bose-enhanced t-channel photons, we compute the interaction rate as a function of the neutrino momentum and flavour. Effects on the – (0 . . . 2)% level are found, noticeably smaller than a previous estimate of a related quantity.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
K. Akita and M. Yamaguchi, A precision calculation of relic neutrino decoupling, JCAP 08 (2020) 012 [arXiv:2005.07047] [INSPIRE].
J. Froustey, C. Pitrou and M.C. Volpe, Neutrino decoupling including flavour oscillations and primordial nucleosynthesis, JCAP 12 (2020) 015 [arXiv:2008.01074] [INSPIRE].
J.J. Bennett et al., Towards a precision calculation of Neff in the Standard Model. Part II. Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED, JCAP 04 (2021) 073 [arXiv:2012.02726] [INSPIRE].
M. Cielo, M. Escudero, G. Mangano and O. Pisanti, Neff in the Standard Model at NLO is 3.043, Phys. Rev. D 108 (2023) L121301 [arXiv:2306.05460] [INSPIRE].
S. Esposito et al., Neutrino energy loss rate in a stellar plasma, Nucl. Phys. B 658 (2003) 217 [astro-ph/0301438] [INSPIRE].
G. Sigl and G. Raffelt, General kinetic description of relativistic mixed neutrinos, Nucl. Phys. B 406 (1993) 423 [INSPIRE].
D. Nötzold and G. Raffelt, Neutrino dispersion at finite temperature and density, Nucl. Phys. B 307 (1988) 924 [INSPIRE].
S. Sarantakos, A. Sirlin and W.J. Marciano, Radiative corrections to neutrino-lepton scattering in the SU(2)L ⊗ U(1) theory, Nucl. Phys. B 217 (1983) 84 [INSPIRE].
R.J. Hill and O. Tomalak, On the effective theory of neutrino-electron and neutrino-quark interactions, Phys. Lett. B 805 (2020) 135466 [arXiv:1911.01493] [INSPIRE].
O. Tomalak and R.J. Hill, Theory of elastic neutrino-electron scattering, Phys. Rev. D 101 (2020) 033006 [arXiv:1907.03379] [INSPIRE].
M. Escudero Abenza, Precision early universe thermodynamics made simple: Neff and neutrino decoupling in the Standard Model and beyond, JCAP 05 (2020) 048 [arXiv:2001.04466] [INSPIRE].
H.A. Weldon, Effective fermion masses of order gT in high-temperature gauge theories with exact chiral invariance, Phys. Rev. D 26 (1982) 2789 [INSPIRE].
E. Braaten and R.D. Pisarski, Soft amplitudes in hot gauge theories: A general analysis, Nucl. Phys. B 337 (1990) 569 [INSPIRE].
J.C. Taylor and S.M.H. Wong, The effective action of hard thermal loops in QCD, Nucl. Phys. B 346 (1990) 115 [INSPIRE].
G. Jackson, Two-loop thermal spectral functions with general kinematics, Phys. Rev. D 100 (2019) 116019 [arXiv:1910.07552] [INSPIRE].
G. Jackson, Numerical code for master integrals for thermal spectral functions, https://zenodo.org/record/3478143.
A. Salvio, P. Lodone and A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate, JHEP 08 (2011) 116 [arXiv:1106.2814] [INSPIRE].
G. Jackson and M. Laine, Efficient numerical integration of thermal interaction rates, JHEP 09 (2021) 125 [arXiv:2107.07132] [INSPIRE].
M. Drewes et al., Towards a precision calculation of Neff in the Standard Model III: Improved estimate of NLO corrections to the collision integral, arXiv:2402.18481 [INSPIRE].
J. Ghiglieri and M. Laine, Neutrino dynamics below the electroweak crossover, JCAP 07 (2016) 015 [arXiv:1605.07720] [INSPIRE].
Acknowledgments
G.J. thanks Wouter Dekens for a pointer to ref. [9]. M.L. thanks Miguel Escudero for discussions about the motivation for this work [4], for drawing our attention to ref. [5], and for comments on the manuscript, and Dietrich Bödeker for many helpful discussions. G.J. was funded by the U.S. Department of Energy (DOE), under grant No. DE-FG02-00ER41132, and by the Agence Nationale de la Recherche (France), under grant ANR-22-CE31-0018 (AUTOTHERM).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2312.07015
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Jackson, G., Laine, M. QED corrections to the thermal neutrino interaction rate. J. High Energ. Phys. 2024, 89 (2024). https://doi.org/10.1007/JHEP05(2024)089
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2024)089