Abstract
We construct the canonical constitutive relations for a fluid description of a system with a spin current, valid in an arbitrary number of dimensions in the absence of parity breaking or time reversal breaking terms. Our study encompasses the hydrostatic partition function, the entropy current, Kubo formula, conformal invariance, and the effect of charge. At some stages of the computation we turn on a background torsion tensor which naturally couples to the spin current.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
STAR collaboration, Global Λ hyperon polarization in nuclear collisions: evidence for the most vortical fluid, Nature 548 (2017) 62 [arXiv:1701.06657] [INSPIRE].
STAR collaboration, Global polarization of Λ hyperons in Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 98 (2018) 014910 [arXiv:1805.04400] [INSPIRE].
R. Takahashi et al., Spin hydrodynamic generation, Nature Phys. 12 (2015) 52.
S.A. Voloshin, Polarized secondary particles in unpolarized high energy hadron-hadron collisions?, nucl-th/0410089 [INSPIRE].
N. Armesto al., Last Call for Predictions, in proceedings of Workshop on Heavy Ion Collisions at the LHC, Geneva, Switzerland, 14 May – 8 June 2007, arXiv:0711.0974 [https://doi.org/10.1088/0954-3899/35/5/054001] [INSPIRE].
F. Becattini, F. Piccinini and J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy, Phys. Rev. C 77 (2008) 024906 [arXiv:0711.1253] [INSPIRE].
B. Betz, M. Gyulassy and G. Torrieri, Polarization probes of vorticity in heavy ion collisions, Phys. Rev. C 76 (2007) 044901 [arXiv:0708.0035] [INSPIRE].
F. Becattini, V. Chandra, L. Del Zanna and E. Grossi, Relativistic distribution function for particles with spin at local thermodynamical equilibrium, Annals Phys. 338 (2013) 32 [arXiv:1303.3431] [INSPIRE].
W. Florkowski et al., Spin-dependent distribution functions for relativistic hydrodynamics of spin-1/2 particles, Phys. Rev. D 97 (2018) 116017 [arXiv:1712.07676] [INSPIRE].
W. Florkowski, B. Friman, A. Jaiswal and E. Speranza, Relativistic fluid dynamics with spin, Phys. Rev. C 97 (2018) 041901 [arXiv:1705.00587] [INSPIRE].
F. Becattini, W. Florkowski and E. Speranza, Spin tensor and its role in non-equilibrium thermodynamics, Phys. Lett. B 789 (2019) 419 [arXiv:1807.10994] [INSPIRE].
F. Becattini and M.A. Lisa, Polarization and Vorticity in the Quark–Gluon Plasma, Ann. Rev. Nucl. Part. Sci. 70 (2020) 395 [arXiv:2003.03640] [INSPIRE].
F. Becattini, Polarization in relativistic fluids: a quantum field theoretical derivation, Lect. Notes Phys. 987 (2021) 15 [arXiv:2004.04050] [INSPIRE].
F. Becattini, Does the spin tensor play any role in non-gravitational physics?, Nucl. Phys. A 1005 (2021) 121833 [arXiv:2003.01406] [INSPIRE].
R. Singh, G. Sophys and R. Ryblewski, Spin polarization dynamics in the Gubser-expanding background, Phys. Rev. D 103 (2021) 074024 [arXiv:2011.14907] [INSPIRE].
J.L. Mañes, M. Valle and M.Á. Vázquez-Mozo, Chiral torsional effects in anomalous fluids in thermal equilibrium, JHEP 05 (2021) 209 [arXiv:2012.08449] [INSPIRE].
S. Bhadury, J. Bhatt, A. Jaiswal and A. Kumar, New developments in relativistic fluid dynamics with spin, Eur. Phys. J. ST 230 (2021) 655 [arXiv:2101.11964] [INSPIRE].
W. Florkowski and R. Ryblewski, Interpretation of Λ spin polarization measurements, Phys. Rev. C 106 (2022) 024905 [arXiv:2102.02890] [INSPIRE].
S. Floerchinger and E. Grossi, Conserved and nonconserved Noether currents from the quantum effective action, Phys. Rev. D 105 (2022) 085015 [arXiv:2102.11098] [INSPIRE].
R. Singh, M. Shokri and R. Ryblewski, Spin polarization dynamics in the Bjorken-expanding resistive MHD background, Phys. Rev. D 103 (2021) 094034 [arXiv:2103.02592] [INSPIRE].
A. Das, W. Florkowski, R. Ryblewski and R. Singh, Pseudogauge dependence of quantum fluctuations of the energy in a hot relativistic gas of fermions, Phys. Rev. D 103 (2021) L091502 [arXiv:2103.01013] [INSPIRE].
N. Weickgenannt et al., Derivation of the nonlocal collision term in the relativistic Boltzmann equation for massive spin-1/2 particles from quantum field theory, Phys. Rev. D 104 (2021) 016022 [arXiv:2103.04896] [INSPIRE].
F. Becattini et al., Local Polarization and Isothermal Local Equilibrium in Relativistic Heavy Ion Collisions, Phys. Rev. Lett. 127 (2021) 272302 [arXiv:2103.14621] [INSPIRE].
E. Speranza, F.S. Bemfica, M.M. Disconzi and J. Noronha, Challenges in solving chiral hydrodynamics, Phys. Rev. D 107 (2023) 054029 [arXiv:2104.02110] [INSPIRE].
K.J. Gonçalves and G. Torrieri, Spin alignment of vector mesons as a probe of spin hydrodynamics and freeze-out, Phys. Rev. C 105 (2022) 034913 [arXiv:2104.12941] [INSPIRE].
D. She, A. Huang, D. Hou and J. Liao, Relativistic viscous hydrodynamics with angular momentum, Sci. Bull. 67 (2022) 2265 [arXiv:2105.04060] [INSPIRE].
C. Yi, S. Pu and D.-L. Yang, Reexamination of local spin polarization beyond global equilibrium in relativistic heavy ion collisions, Phys. Rev. C 104 (2021) 064901 [arXiv:2106.00238] [INSPIRE].
D.-L. Wang, S. Fang and S. Pu, Analytic solutions of relativistic dissipative spin hydrodynamics with Bjorken expansion, Phys. Rev. D 104 (2021) 114043 [arXiv:2107.11726] [INSPIRE].
M. Hongo et al., Relativistic spin hydrodynamics with torsion and linear response theory for spin relaxation, JHEP 11 (2021) 150 [arXiv:2107.14231] [INSPIRE].
S. Lin, Quantum kinetic theory for quantum electrodynamics, Phys. Rev. D 105 (2022) 076017 [arXiv:2109.00184] [INSPIRE].
Z. Chen and S. Lin, Quantum kinetic theory with vector and axial gauge fields, Phys. Rev. D 105 (2022) 014015 [arXiv:2109.08440] [INSPIRE].
M. Buzzegoli, Pseudogauge dependence of the spin polarization and of the axial vortical effect, Phys. Rev. C 105 (2022) 044907 [arXiv:2109.12084] [INSPIRE].
Y.-C. Liu and X.-G. Huang, Spin polarization formula for Dirac fermions at local equilibrium, Sci. China Phys. Mech. Astron. 65 (2022) 272011 [arXiv:2109.15301] [INSPIRE].
M. Valle and M.A. Vazquez-Mozo, On Nieh-Yan transport, JHEP 03 (2022) 177 [arXiv:2112.02003] [INSPIRE].
L. Dong and S. Lin, Dilepton helical production in a vortical quark-gluon plasma, Eur. Phys. J. A 58 (2022) 176 [arXiv:2112.07153] [INSPIRE].
E.B. Sonin, Spin currents and spin superfluidity, Adv. Phys. 59 (2010) 181.
J. König, M.C. Bønsager and A.H. MacDonald, Dissipationless Spin Transport in Thin Film Ferromagnets, Phys. Rev. Lett. 87 (2001) 187202.
W. Chen and M. Sigrist, Dissipationless Multiferroic Magnonics, Phys. Rev. Lett. 114 (2015) 157203.
S. Takei and Y. Tserkovnyak, Superfluid Spin Transport Through Easy-Plane Ferromagnetic Insulators, Phys. Rev. Lett. 112 (2014) 227201.
S. Takei, B.I. Halperin, A. Yacoby and Y. Tserkovnyak, Superfluid spin transport through antiferromagnetic insulators, Phys. Rev. B 90 (2014) 094408.
M. Hongo et al., Spin relaxation rate for heavy quarks in weakly coupled QCD plasma, JHEP 08 (2022) 263 [arXiv:2201.12390] [INSPIRE].
A.D. Gallegos, U. Gürsoy and A. Yarom, Hydrodynamics of spin currents, SciPost Phys. 11 (2021) 041 [arXiv:2101.04759] [INSPIRE].
F.J. Belinfante, On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields, Physica 7 (1940) 449.
L. Rosenfeld, Sur le tenseur d’impulsion-energie, Acad, Roy. Belg. Memoirs de Classes de Science 18 (1940).
K. Jensen et al., Towards hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601 [arXiv:1203.3556] [INSPIRE].
N. Banerjee et al., Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].
S. Jain and T. Sharma, Anomalous charged fluids in 1+1d from equilibrium partition function, JHEP 01 (2013) 039 [arXiv:1203.5308] [INSPIRE].
K. Jensen, Triangle Anomalies, Thermodynamics, and Hydrodynamics, Phys. Rev. D 85 (2012) 125017 [arXiv:1203.3599] [INSPIRE].
M. Valle, Hydrodynamics in 1+1 dimensions with gravitational anomalies, JHEP 08 (2012) 113 [arXiv:1206.1538] [INSPIRE].
S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions, JHEP 01 (2013) 040 [arXiv:1206.6106] [INSPIRE].
N. Banerjee et al., Constraints on Anomalous Fluid in Arbitrary Dimensions, JHEP 03 (2013) 048 [arXiv:1206.6499] [INSPIRE].
K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].
J. Bhattacharya, S. Bhattacharyya and M. Rangamani, Non-dissipative hydrodynamics: Effective actions versus entropy current, JHEP 02 (2013) 153 [arXiv:1211.1020] [INSPIRE].
C. Eling, Y. Oz, S. Theisen and S. Yankielowicz, Conformal Anomalies in Hydrodynamics, JHEP 05 (2013) 037 [arXiv:1301.3170] [INSPIRE].
J. Armas, How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes, JHEP 09 (2013) 073 [arXiv:1304.7773] [INSPIRE].
K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP 10 (2013) 186 [arXiv:1307.3234] [INSPIRE].
S. Chapman, C. Hoyos and Y. Oz, Superfluid Kubo Formulas from Partition Function, JHEP 04 (2014) 186 [arXiv:1310.2247] [INSPIRE].
J.L. Mañes and M. Valle, Parity odd equilibrium partition function in 2 + 1 dimensions, JHEP 11 (2013) 178 [arXiv:1310.2113] [INSPIRE].
K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].
K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP 05 (2014) 110 [arXiv:1311.2935] [INSPIRE].
S. Bhattacharyya, Entropy current and equilibrium partition function in fluid dynamics, JHEP 08 (2014) 165 [arXiv:1312.0220] [INSPIRE].
J. Armas, (Non)-Dissipative Hydrodynamics on Embedded Surfaces, JHEP 09 (2014) 047 [arXiv:1312.0597] [INSPIRE].
S. Bhattacharyya, Entropy Current from Partition Function: One Example, JHEP 07 (2014) 139 [arXiv:1403.7639] [INSPIRE].
E. Megias and M. Valle, Second-order partition function of a non-interacting chiral fluid in 3+1 dimensions, JHEP 11 (2014) 005 [arXiv:1408.0165] [INSPIRE].
K. Jensen, Aspects of hot Galilean field theory, JHEP 04 (2015) 123 [arXiv:1411.7024] [INSPIRE].
L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6, JHEP 12 (2014) 031 [arXiv:1407.6061] [INSPIRE].
M. Harder, P. Kovtun and A. Ritz, On thermal fluctuations and the generating functional in relativistic hydrodynamics, JHEP 07 (2015) 025 [arXiv:1502.03076] [INSPIRE].
M. Valle, Torsional response of relativistic fermions in 2 + 1 dimensions, JHEP 07 (2015) 006 [arXiv:1503.04020] [INSPIRE].
N. Banerjee, S. Dutta and A. Jain, Equilibrium partition function for nonrelativistic fluids, Phys. Rev. D 92 (2015) 081701 [arXiv:1505.05677] [INSPIRE].
J. Armas, J. Bhattacharya, A. Jain and N. Kundu, On the surface of superfluids, JHEP 06 (2017) 090 [arXiv:1612.08088] [INSPIRE].
J. Hernandez and P. Kovtun, Relativistic magnetohydrodynamics, JHEP 05 (2017) 001 [arXiv:1703.08757] [INSPIRE].
J. Armas and A. Jain, One-form superfluids & magnetohydrodynamics, JHEP 01 (2020) 041 [arXiv:1811.04913] [INSPIRE].
P. Kovtun and A. Shukla, Einstein’s equations in matter, Phys. Rev. D 101 (2020) 104051 [arXiv:1907.04976] [INSPIRE].
P. Kovtun, First-order relativistic hydrodynamics is stable, JHEP 10 (2019) 034 [arXiv:1907.08191] [INSPIRE].
J. Armas et al., Newton-Cartan Submanifolds and Fluid Membranes, Phys. Rev. E 101 (2020) 062803 [arXiv:1912.01613] [INSPIRE].
J. Armas and A. Jain, Effective field theory for hydrodynamics without boosts, SciPost Phys. 11 (2021) 054 [arXiv:2010.15782] [INSPIRE].
J. de Boer et al., Perfect Fluids, SciPost Phys. 5 (2018) 003 [arXiv:1710.04708] [INSPIRE].
S. Li, M.A. Stephanov and H.-U. Yee, Nondissipative Second-Order Transport, Spin, and Pseudogauge Transformations in Hydrodynamics, Phys. Rev. Lett. 127 (2021) 082302 [arXiv:2011.12318] [INSPIRE].
J. Bhattacharya, S. Bhattacharyya, S. Minwalla and A. Yarom, A Theory of first order dissipative superfluid dynamics, JHEP 05 (2014) 147 [arXiv:1105.3733] [INSPIRE].
S. Bhattacharyya, Constraints on the second order transport coefficients of an uncharged fluid, JHEP 07 (2012) 104 [arXiv:1201.4654] [INSPIRE].
L.D. Landau and E.M. Lifshitz, Fluid Mechanics: Volume 6, Elsevier Science (2013).
P. Glorioso and H. Liu, The second law of thermodynamics from symmetry and unitarity, arXiv:1612.07705 [INSPIRE].
K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, An entropy current in superspace, JHEP 01 (2019) 061 [arXiv:1803.07070] [INSPIRE].
F.M. Haehl, R. Loganayagam and M. Rangamani, Inflow Mechanism for Hydrodynamic Entropy, Phys. Rev. Lett. 121 (2018) 051602 [arXiv:1803.08490] [INSPIRE].
K. Fukushima and S. Pu, Spin hydrodynamics and symmetric energy-momentum tensors – A current induced by the spin vorticity –, Phys. Lett. B 817 (2021) 136346 [arXiv:2010.01608] [INSPIRE].
K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh transport, SciPost Phys. 5 (2018) 053 [arXiv:1804.04654] [INSPIRE].
A. Iorio, L. O’Raifeartaigh, I. Sachs and C. Wiesendanger, Weyl gauging and conformal invariance, Nucl. Phys. B 495 (1997) 433 [hep-th/9607110] [INSPIRE].
I.L. Buchbinder and I.L. Shapiro, On the renormalization of models of quantum field theory in an external gravitational field with torsion, Phys. Lett. B 151 (1985) 263 [INSPIRE].
I.L. Shapiro, Physical aspects of the space-time torsion, Phys. Rept. 357 (2002) 113 [hep-th/0103093] [INSPIRE].
R. Loganayagam, Entropy Current in Conformal Hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [INSPIRE].
F. de Juan, A. Cortijo and M.A.H. Vozmediano, Dislocations and torsion in graphene and related systems, Nucl. Phys. B 828 (2010) 625 [arXiv:0909.4068] [INSPIRE].
A. Mesaros, D. Sadri and J. Zaanen, Parallel Transport of Electrons in Graphene Parallels Gravity, Phys. Rev. B 82 (2010) 073405 [arXiv:0909.2703] [INSPIRE].
K. Hattori et al., Fate of spin polarization in a relativistic fluid: An entropy-current analysis, Phys. Lett. B 795 (2019) 100 [arXiv:1901.06615] [INSPIRE].
S.R. De Groot, Relativistic Kinetic Theory. Principles and Applications, North-Holland Publishing Company (1980) [INSPIRE].
F. Becattini, Covariant statistical mechanics and the stress-energy tensor, Phys. Rev. Lett. 108 (2012) 244502 [arXiv:1201.5278] [INSPIRE].
F.M. Haehl, R. Loganayagam and M. Rangamani, The eightfold way to dissipation, Phys. Rev. Lett. 114 (2015) 201601 [arXiv:1412.1090] [INSPIRE].
M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, JHEP 09 (2017) 095 [arXiv:1511.03646] [INSPIRE].
Acknowledgments
We thank Francesco Becattini, Saso Grozdanov, Zohar Komargodski, Giorgio Torrieri, Enrico Speranza, Toby Wiseman and Ho-Ung Yee. DG and UG are partially supported by the Delta-Institute for Theoretical Physics (D-ITP) funded by the Dutch Ministry of Education, Culture and Science (OCW). In addition, DG is supported in part by CONA-CyT through the program Fomento, Desarrollo y Vinculacion de Recursos Humanos de Alto Nivel and UG is supported by the Netherlands Organisation for Scientific Research (NWO) under the VICI grant VI.C.202.104. AY is supported in part by an Israeli Science Foundation excellence center grant 2289/18 and a Binational Science Foundation grant 2016324.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2203.05044
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gallegos, A.D., Gürsoy, U. & Yarom, A. Hydrodynamics, spin currents and torsion. J. High Energ. Phys. 2023, 139 (2023). https://doi.org/10.1007/JHEP05(2023)139
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2023)139