Skip to main content

New-physics signatures via CP violation in η(′)π0μ+μ and η′ → ημ+μ decays

A preprint version of the article is available at arXiv.

Abstract

In this work we investigate the prospect of observing new-physics signatures via CP violation in η(′)π0μ+μ and η′ → ημ+μ decays at the REDTOP experiment. We make use of the SMEFT to parametrise the new-physics CP-violating effects and find that the projected REDTOP statistics are not competitive with respect to nEDM experiments. This reasserts the ημ+μ process as the most promising channel to find CP-violation at this experimental facility.

References

  1. Muon g − 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

  2. REDTOP collaboration, The REDTOP project: Rare Eta Decays with a TPC for Optical Photons, PoS ICHEP2016 (2016) 812 [INSPIRE].

  3. REDTOP collaboration, The REDTOP experiment, arXiv:1910.08505 [INSPIRE].

  4. P. Sanchez-Puertas, CP violation in η muonic decays, JHEP 01 (2019) 031 [arXiv:1810.13228] [INSPIRE].

    ADS  Article  Google Scholar 

  5. B. Kubis, P. Sanchez-Puertas and M. Zillinger, CP violation in η(′)π+πμ+μ, work in progress.

  6. R. Escribano and E. Royo, A theoretical analysis of the semileptonic decays η(′)π0l+l and η′ → ηl+l, Eur. Phys. J. C 80 (2020) 1190 [Erratum ibid. 81 (2021) 140] [arXiv:2007.12467] [INSPIRE].

  7. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    ADS  Article  Google Scholar 

  8. R. Kaiser and H. Leutwyler, Large Nc in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [INSPIRE].

  9. P. Herrera-Siklody, J.I. Latorre, P. Pascual and J. Taron, Chiral effective Lagrangian in the large Nc limit: The Nonet case, Nucl. Phys. B 497 (1997) 345 [hep-ph/9610549] [INSPIRE].

  10. P. Herrera-Siklody, J.I. Latorre, P. Pascual and J. Taron, η-ηmixing from U(3)L ⊗ U(3)R chiral perturbation theory, Phys. Lett. B 419 (1998) 326 [hep-ph/9710268] [INSPIRE].

  11. X.-K. Guo, Z.-H. Guo, J.A. Oller and J.J. Sanz-Cillero, Scrutinizing the η-ηl mixing, masses and pseudoscalar decay constants in the framework of U(3) chiral effective field theory, JHEP 06 (2015) 175 [arXiv:1503.02248] [INSPIRE].

  12. P. Bickert, P. Masjuan and S. Scherer, η-ηMixing in Large-Nc Chiral Perturbation Theory, Phys. Rev. D 95 (2017) 054023 [arXiv:1612.05473] [INSPIRE].

  13. R. Escribano, P. Masjuan and J.J. Sanz-Cillero, Chiral dynamics predictions for η′ → ηππ, JHEP 05 (2011) 094 [arXiv:1011.5884] [INSPIRE].

    ADS  Article  Google Scholar 

  14. R. Escribano, S. Gonzalez-Solis and P. Roig, Predictions on the second-class current decays τπη()ντ, Phys. Rev. D 94 (2016) 034008 [arXiv:1601.03989] [INSPIRE].

  15. G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].

  16. G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Chiral Lagrangians for Massive Spin 1 Fields, Phys. Lett. B 223 (1989) 425 [INSPIRE].

  17. V. Cirigliano, G. Ecker, M. Eidemuller, R. Kaiser, A. Pich and J. Portoles, Towards a consistent estimate of the chiral low-energy constants, Nucl. Phys. B 753 (2006) 139 [hep-ph/0603205] [INSPIRE].

  18. R. Escribano and E. Royo, π0-η-ηmixing from VPγ and PVγ decays, Phys. Lett. B 807 (2020) 135534 [arXiv:2003.08379] [INSPIRE].

  19. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  20. RQCD collaboration, Masses and decay constants of the η and ηmesons from lattice QCD, JHEP 08 (2021) 137 [arXiv:2106.05398] [INSPIRE].

  21. H. Leutwyler, On the 1/N expansion in chiral perturbation theory, Nucl. Phys. B Proc. Suppl. 64 (1998) 223 [hep-ph/9709408] [INSPIRE].

  22. M. Benayoun, L. DelBuono and H.B. O’Connell, VMD, the WZW Lagrangian and ChPT: The Third mixing angle, Eur. Phys. J. C 17 (2000) 593 [hep-ph/9905350] [INSPIRE].

  23. GEANT4 collaboration, GEANT4: A simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].

  24. H.E. Haber, Spin formalism and applications to new physics searches, in 21st Annual SLAC Summer Institute on Particle Physics: Spin Structure in High-energy Processes (SSI 93), 26 July–6 August 1993, Stanford, CA, U.S.A., pp. 231–272 (1994) [hep-ph/9405376] [INSPIRE].

  25. https://redtop.fnal.gov.

  26. P. Sanchez-Puertas, New-physics searches in CP-violating η muonic decays, Nucl. Part. Phys. Proc. 312-317 (2021) 201 [arXiv:1909.07491] [INSPIRE].

    Article  Google Scholar 

  27. C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].

  28. C. Bouchiat and L. Michel, Mesure de la polarisation des electrons relativistes, Nucl. Phys. 5 (1958) 416 [INSPIRE].

  29. L. Michel, Covariant description of polarization, Nuovo Cim. 14 (1959) 95 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Royo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2202.04886

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Escribano, R., Royo, E. & Sanchez-Puertas, P. New-physics signatures via CP violation in η(′)π0μ+μ and η′ → ημ+μ decays. J. High Energ. Phys. 2022, 147 (2022). https://doi.org/10.1007/JHEP05(2022)147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2022)147

Keywords

  • CP Violation
  • Semi-Leptonic Decays
  • Chiral Lagrangian
  • SMEFT