Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Mirror twin Higgs cosmology: constraints and a possible resolution to the H0 and S8 tensions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Cosmological signatures of a mirror twin Higgs

28 September 2018

Zackaria Chacko, David Curtin, … Yuhsin Tsai

Charged dark matter in supersymmetric twin Higgs models

10 October 2022

Marcin Badziak, Giovanni Grilli di Cortona, … Michał Łukawski

Twin Higgs portal dark matter

02 August 2021

David Curtin & Shayne Gryba

Coscattering/coannihilation dark matter in a fraternal twin Higgs model

17 September 2018

Hsin-Chia Cheng, Lingfeng Li & Rui Zheng

A predictive mirror twin Higgs with small Z2 breaking

28 May 2020

Keisuke Harigaya, Robert McGehee, … Katelin Schutz

Cosmology of the Twin Higgs without explicit ℤ2 breaking

22 December 2021

Hugues Beauchesne & Yevgeny Kats

Phase transitions in twin Higgs models

04 December 2018

Kohei Fujikura, Kohei Kamada, … Masahide Yamaguchi

Observational imprints of our lost twin anti-universe

03 November 2022

Samuel Barroso Bellido & Mariusz P. Da̧browski

First-order phase transitions in Twin Higgs models

17 February 2023

Marcin Badziak & Ignacy Nałęcz

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 09 May 2022

Mirror twin Higgs cosmology: constraints and a possible resolution to the H0 and S8 tensions

  • Saurabh Bansal1,2,
  • Jeong Han Kim3,4,5,
  • Christopher Kolda1,
  • Matthew Low6 &
  • …
  • Yuhsin Tsai1 

Journal of High Energy Physics volume 2022, Article number: 50 (2022) Cite this article

  • 125 Accesses

  • 7 Citations

  • 9 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The mirror twin Higgs model (MTH) is a solution to the Higgs hierarchy problem that provides well-predicted cosmological signatures with only three extra parameters: the temperature of the twin sector, the abundance of twin baryons, and the vacuum expectation value (VEV) of twin electroweak symmetry breaking. These parameters specify the behavior of twin radiation and the acoustic oscillations of twin baryons, which lead to testable effects on the cosmic microwave background (CMB) and large-scale structure (LSS). While collider searches can only probe the twin VEV, through a fit to cosmological data we show that the existing CMB (Planck18 TTTEEE+lowE+lowT+lensing) and LSS (KV450) data already provide useful constraints on the remaining MTH parameters. Additionally, we show that the presence of twin radiation in this model can raise the Hubble constant H0 while the scattering twin baryons can reduce the matter fluctuations S8, which helps to relax the observed H0 and S8 tensions simultaneously. This scenario is different from the typical ΛCDM + ∆Neff model, in which extra radiation helps with the Hubble tension but worsens the S8 tension. For instance, when including the SH0ES and 2013 Planck SZ data in the fit, we find that a universe with ≳ 20% of the dark matter comprised of twin baryons is preferred over ΛCDM by ∼ 4σ. If the twin sector is indeed responsible for resolving the H0 and S8 tensions, future measurements from the Euclid satellite and CMB Stage 4 experiment will further measure the twin parameters to O(1 − 10%)-level precision. Our study demonstrates how models with hidden naturalness can potentially be probed using precision cosmological data.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: Natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].

  2. Z. Chacko, H.-S. Goh and R. Harnik, A twin Higgs model from left-right symmetry, JHEP 01 (2006) 108 [hep-ph/0512088] [INSPIRE].

  3. R. Barbieri, T. Grégoire and L.J. Hall, Mirror world at the large hadron collider, hep-ph/0509242 [INSPIRE].

  4. S. Chang, L.J. Hall and N. Weiner, A supersymmetric twin Higgs, Phys. Rev. D 75 (2007) 035009 [hep-ph/0604076] [INSPIRE].

  5. A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003 [hep-ph/0604066] [INSPIRE].

  6. H. Cai, H.-C. Cheng and J. Terning, A Quirky Little Higgs Model, JHEP 05 (2009) 045 [arXiv:0812.0843] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. N. Craig, S. Knapen and P. Longhi, Neutral Naturalness from Orbifold Higgs Models, Phys. Rev. Lett. 114 (2015) 061803 [arXiv:1410.6808] [INSPIRE].

  8. N. Craig, S. Knapen and P. Longhi, The Orbifold Higgs, JHEP 03 (2015) 106 [arXiv:1411.7393] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  9. Z. Chacko, Y. Nomura, M. Papucci and G. Perez, Natural little hierarchy from a partially goldstone twin Higgs, JHEP 01 (2006) 126 [hep-ph/0510273] [INSPIRE].

  10. G. Burdman, Z. Chacko, H.-S. Goh and R. Harnik, Folded supersymmetry and the LEP paradox, JHEP 02 (2007) 009 [hep-ph/0609152] [INSPIRE].

  11. N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs, JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].

    Article  ADS  Google Scholar 

  12. M. Geller and O. Telem, Holographic Twin Higgs Model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].

  13. M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].

  14. R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The Composite Twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the Dark at the LHC, JHEP 07 (2015) 105 [arXiv:1501.05310] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Batell and M. McCullough, Neutrino Masses from Neutral Top Partners, Phys. Rev. D 92 (2015) 073018 [arXiv:1504.04016] [INSPIRE].

  17. A. Katz, A. Mariotti, S. Pokorski, D. Redigolo and R. Ziegler, SUSY Meets Her Twin, JHEP 01 (2017) 142 [arXiv:1611.08615] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  18. N. Craig, S. Knapen, P. Longhi and M. Strassler, The Vector-like Twin Higgs, JHEP 07 (2016) 002 [arXiv:1601.07181] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. M. Badziak and K. Harigaya, Asymptotically Free Natural Supersymmetric Twin Higgs Model, Phys. Rev. Lett. 120 (2018) 211803 [arXiv:1711.11040] [INSPIRE].

  20. M. Badziak and K. Harigaya, Supersymmetric D-term Twin Higgs, JHEP 06 (2017) 065 [arXiv:1703.02122] [INSPIRE].

    Article  ADS  Google Scholar 

  21. M. Badziak and K. Harigaya, Minimal Non-Abelian Supersymmetric Twin Higgs, JHEP 10 (2017) 109 [arXiv:1707.09071] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J. Serra, S. Stelzl, R. Torre and A. Weiler, Hypercharged Naturalness, JHEP 10 (2019) 060 [arXiv:1905.02203] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. N. Arkani-Hamed, T. Cohen, R.T. D’Agnolo, A. Hook, H.D. Kim and D. Pinner, Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom, Phys. Rev. Lett. 117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].

  24. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological Relaxation of the Electroweak Scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

  25. G. Dvali, Large hierarchies from attractor vacua, Phys. Rev. D 74 (2006) 025018 [hep-th/0410286] [INSPIRE].

  26. G. Dvali and A. Vilenkin, Cosmic attractors and gauge hierarchy, Phys. Rev. D 70 (2004) 063501 [hep-th/0304043] [INSPIRE].

  27. M. Freytsis, S. Knapen, D.J. Robinson and Y. Tsai, Gamma-rays from Dark Showers with Twin Higgs Models, JHEP 05 (2016) 018 [arXiv:1601.07556] [INSPIRE].

    Article  ADS  Google Scholar 

  28. Z. Chacko, D. Curtin, M. Geller and Y. Tsai, Direct detection of mirror matter in Twin Higgs models, JHEP 11 (2021) 198 [arXiv:2104.02074] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  30. Z. Chacko, N. Craig, P.J. Fox and R. Harnik, Cosmology in Mirror Twin Higgs and Neutrino Masses, JHEP 07 (2017) 023 [arXiv:1611.07975] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. Craig, S. Koren and T. Trott, Cosmological Signals of a Mirror Twin Higgs, JHEP 05 (2017) 038 [arXiv:1611.07977] [INSPIRE].

    Article  MATH  ADS  Google Scholar 

  32. H. Beauchesne and Y. Kats, Cosmology of the Twin Higgs without explicit ℤ2 breaking, JHEP 12 (2021) 160 [arXiv:2109.03279] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Farina, Asymmetric Twin Dark Matter, JCAP 11 (2015) 017 [arXiv:1506.03520] [INSPIRE].

    Article  ADS  Google Scholar 

  34. R. Barbieri, L.J. Hall and K. Harigaya, Minimal Mirror Twin Higgs, JHEP 11 (2016) 172 [arXiv:1609.05589] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Csáki, E. Kuflik and S. Lombardo, Viable Twin Cosmology from Neutrino Mixing, Phys. Rev. D 96 (2017) 055013 [arXiv:1703.06884] [INSPIRE].

  36. R. Barbieri, L.J. Hall and K. Harigaya, Effective Theory of Flavor for Minimal Mirror Twin Higgs, JHEP 10 (2017) 015 [arXiv:1706.05548] [INSPIRE].

    Article  ADS  Google Scholar 

  37. K. Harigaya, R. Mcgehee, H. Murayama and K. Schutz, A predictive mirror twin Higgs with small Z2 breaking, JHEP 05 (2020) 155 [arXiv:1905.08798] [INSPIRE].

    Article  ADS  Google Scholar 

  38. G. Krnjaic and K. Sigurdson, Big Bang Darkleosynthesis, Phys. Lett. B 751 (2015) 464 [arXiv:1406.1171] [INSPIRE].

    Article  ADS  Google Scholar 

  39. M. Redi and A. Tesi, Cosmological Production of Dark Nuclei, JHEP 04 (2019) 108 [arXiv:1812.08784] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Z. Chacko, D. Curtin, M. Geller and Y. Tsai, Cosmological Signatures of a Mirror Twin Higgs, JHEP 09 (2018) 163 [arXiv:1803.03263] [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Hildebrandt et al., KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data, Astron. Astrophys. 633 (2020) A69 [arXiv:1812.06076] [INSPIRE].

    Article  Google Scholar 

  42. Euclid Theory Working Group collaboration, Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel. 16 (2013) 6 [arXiv:1206.1225] [INSPIRE].

  43. CMB-S4 collaboration, CMB-S4 Science Book, First Edition, arXiv:1610.02743 [INSPIRE].

  44. D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

    Article  ADS  Google Scholar 

  45. T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys. Dark Univ. 24 (2019) 100260 [arXiv:1804.07261] [INSPIRE].

  46. A.G. Riess et al., Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM, Astrophys. J. Lett. 908 (2021) L6 [arXiv:2012.08534] [INSPIRE].

    Article  ADS  Google Scholar 

  47. L. Breuval et al., The Milky Way Cepheid Leavitt law based on Gaia DR2 parallaxes of companion stars and host open cluster populations, Astron. Astrophys. 643 (2020) A115 [arXiv:2006.08763] [INSPIRE].

    Article  Google Scholar 

  48. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019) 85 [arXiv:1903.07603] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Soltis, S. Casertano and A.G. Riess, The Parallax of ω Centauri Measured from Gaia EDR3 and a Direct, Geometric Calibration of the Tip of the Red Giant Branch and the Hubble Constant, Astrophys. J. Lett. 908 (2021) L5 [arXiv:2012.09196] [INSPIRE].

    Article  ADS  Google Scholar 

  50. W.L. Freedman et al., Calibration of the Tip of the Red Giant Branch (TRGB), arXiv:2002.01550 [INSPIRE].

  51. W.L. Freedman, Measurements of the Hubble Constant: Tensions in Perspective, Astrophys. J. 919 (2021) 16 [arXiv:2106.15656] [INSPIRE].

    Article  ADS  Google Scholar 

  52. S.H. Suyu et al., H0LiCOW — I. H0 Lenses in COSMOGRAIL’s Wellspring: program overview, Mon. Not. Roy. Astron. Soc. 468 (2017) 2590 [arXiv:1607.00017] [INSPIRE].

  53. K.C. Wong et al., H0LiCOW — XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes, Mon. Not. Roy. Astron. Soc. 498 (2020) 1420 [arXiv:1907.04869] [INSPIRE].

  54. S. Birrer et al., TDCOSMO — IV. Hierarchical time-delay cosmography — joint inference of the Hubble constant and galaxy density profiles, Astron. Astrophys. 643 (2020) A165 [arXiv:2007.02941] [INSPIRE].

  55. E. Di Valentino et al., In the realm of the Hubble tension — a review of solutions, Class. Quant. Grav. 38 (2021) 153001 [arXiv:2103.01183] [INSPIRE].

  56. C. Heymans et al., CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments, Mon. Not. Roy. Astron. Soc. 432 (2013) 2433 [arXiv:1303.1808] [INSPIRE].

  57. N. MacCrann, J. Zuntz, S. Bridle, B. Jain and M.R. Becker, Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune?, Mon. Not. Roy. Astron. Soc. 451 (2015) 2877 [arXiv:1408.4742] [INSPIRE].

    Article  ADS  Google Scholar 

  58. S. Joudaki et al., KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear, Astron. Astrophys. 638 (2020) L1 [arXiv:1906.09262] [INSPIRE].

    Article  ADS  Google Scholar 

  59. C. Heymans et al., KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, Astron. Astrophys. 646 (2021) A140 [arXiv:2007.15632] [INSPIRE].

    Article  Google Scholar 

  60. L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101 (2020) 043533 [arXiv:1908.03663] [INSPIRE].

  61. N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S.J. Witte, V. Poulin and J. Lesgourgues, The H0 Olympics: A fair ranking of proposed models, arXiv:2107.10291 [INSPIRE].

  62. F.-Y. Cyr-Racine, F. Ge and L. Knox, A Symmetry of Cosmological Observables, and a High Hubble Constant as an Indicator of a Mirror World Dark Sector, arXiv:2107.13000 [INSPIRE].

  63. N. Blinov, G. Krnjaic and S.W. Li, Towards a Realistic Model of Dark Atoms to Resolve the Hubble Tension, arXiv:2108.11386 [INSPIRE].

  64. V. Prilepina and Y. Tsai, Reconciling Large And Small-Scale Structure In Twin Higgs Models, JHEP 09 (2017) 033 [arXiv:1611.05879] [INSPIRE].

    Article  ADS  Google Scholar 

  65. ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].

  66. CMS collaboration, Combined Higgs boson production and decay measurements with up to 137 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-HIG-19-005, CERN, Geneva (2020).

  67. R. Contino, D. Greco, R. Mahbubani, R. Rattazzi and R. Torre, Precision Tests and Fine Tuning in Twin Higgs Models, Phys. Rev. D 96 (2017) 095036 [arXiv:1702.00797] [INSPIRE].

  68. C. Csáki, M. Geller, O. Telem and A. Weiler, The Flavor of the Composite Twin Higgs, JHEP 09 (2016) 146 [arXiv:1512.03427] [INSPIRE].

    Article  ADS  Google Scholar 

  69. D. Curtin and J. Setford, How To Discover Mirror Stars, Phys. Lett. B 804 (2020) 135391 [arXiv:1909.04071] [INSPIRE].

  70. D. Curtin and J. Setford, Signatures of Mirror Stars, JHEP 03 (2020) 041 [arXiv:1909.04072] [INSPIRE].

    Article  ADS  Google Scholar 

  71. H. Winch, J. Setford, J. Bovy and D. Curtin, Using LSST Microlensing to Constrain Dark Compact Objects in Spherical and Disk Configurations, arXiv:2012.07136 [INSPIRE].

  72. M. Hippert, J. Setford, H. Tan, D. Curtin, J. Noronha-Hostler and N. Yunes, Mirror Neutron Stars, arXiv:2103.01965 [INSPIRE].

  73. H.-C. Cheng, L. Li and R. Zheng, Coscattering/Coannihilation Dark Matter in a Fraternal Twin Higgs Model, JHEP 09 (2018) 098 [arXiv:1805.12139] [INSPIRE].

    Article  ADS  Google Scholar 

  74. O. Pisanti et al., PArthENoPE: Public Algorithm Evaluating the Nucleosynthesis of Primordial Elements, Comput. Phys. Commun. 178 (2008) 956 [arXiv:0705.0290] [INSPIRE].

    Article  ADS  Google Scholar 

  75. M.J. Savage, Nuclear Physics from Lattice Quantum Chromodynamics, in 12th Conference on the Intersections of Particle and Nuclear Physics, (2015) [arXiv:1510.01787] [INSPIRE].

  76. J. Bernstein, L.S. Brown and G. Feinberg, Cosmological helium production simplified, Rev. Mod. Phys. 61 (1989) 25 [INSPIRE].

    Article  ADS  Google Scholar 

  77. S. Sarkar, Big bang nucleosynthesis and physics beyond the standard model, Rept. Prog. Phys. 59 (1996) 1493 [hep-ph/9602260] [INSPIRE].

  78. V.F. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43 (2004) 669 [astro-ph/0303073] [INSPIRE].

  79. A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev. D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].

  80. S. Borsányi et al., Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452 [arXiv:1406.4088] [INSPIRE].

    Article  ADS  Google Scholar 

  81. P.J.E. Peebles, Recombination of the Primeval Plasma, Astrophys. J. 153 (1968) 1 [INSPIRE].

  82. S. Seager, D.D. Sasselov and D. Scott, A new calculation of the recombination epoch, Astrophys. J. Lett. 523 (1999) L1 [astro-ph/9909275] [INSPIRE].

  83. S. Seager, D.D. Sasselov and D. Scott, How exactly did the universe become neutral?, Astrophys. J. Suppl. 128 (2000) 407 [astro-ph/9912182] [INSPIRE].

  84. C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [INSPIRE].

  85. L. Spitzer, Jr. and J.L. Greenstein, Continuous Emission from Planetary Nebulae, Astrophys. J. 114 (1951) 407.

    Article  ADS  Google Scholar 

  86. F.-Y. Cyr-Racine and K. Sigurdson, Cosmology of atomic dark matter, Phys. Rev. D 87 (2013) 103515 [arXiv:1209.5752] [INSPIRE].

  87. F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger and C. Pfrommer, ETHOS — an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe, Phys. Rev. D 93 (2016) 123527 [arXiv:1512.05344] [INSPIRE].

  88. S. Gariazzo, P.F. de Salas and S. Pastor, Thermalisation of sterile neutrinos in the early Universe in the 3+1 scheme with full mixing matrix, JCAP 07 (2019) 014 [arXiv:1905.11290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  89. M.Y. Khlopov, G.M. Beskin, N.E. Bochkarev, L.A. Pustylnik and S.A. Pustylnik, Observational Physics of Mirror World, Sov. Astron. 35 (1991) 21 [INSPIRE].

    ADS  Google Scholar 

  90. A.Y. Ignatiev and R.R. Volkas, Mirror dark matter and large scale structure, Phys. Rev. D 68 (2003) 023518 [hep-ph/0304260] [INSPIRE].

  91. Z. Berezhiani, P. Ciarcelluti, D. Comelli and F.L. Villante, Structure formation with mirror dark matter: CMB and LSS, Int. J. Mod. Phys. D 14 (2005) 107 [astro-ph/0312605] [INSPIRE].

  92. P. Ciarcelluti, Cosmology with mirror dark matter. 1. Linear evolution of perturbations, Int. J. Mod. Phys. D 14 (2005) 187 [astro-ph/0409630] [INSPIRE].

  93. P. Ciarcelluti, Cosmology with mirror dark matter. 2. Cosmic microwave background and large scale structure, Int. J. Mod. Phys. D 14 (2005) 223 [astro-ph/0409633].

  94. R. Foot, Implications of mirror dark matter kinetic mixing for CMB anisotropies, Phys. Lett. B 718 (2013) 745 [arXiv:1208.6022] [INSPIRE].

    Article  ADS  Google Scholar 

  95. R. Foot, Mirror dark matter: Cosmology, galaxy structure and direct detection, Int. J. Mod. Phys. A 29 (2014) 1430013 [arXiv:1401.3965] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  96. F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson, Constraints on Large-Scale Dark Acoustic Oscillations from Cosmology, Phys. Rev. D 89 (2014) 063517 [arXiv:1310.3278] [INSPIRE].

  97. S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering, Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

  98. Z. Hou, R. Keisler, L. Knox, M. Millea and C. Reichardt, How Massless Neutrinos Affect the Cosmic Microwave Background Damping Tail, Phys. Rev. D 87 (2013) 083008 [arXiv:1104.2333] [INSPIRE].

  99. D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of New Physics in the CMB, JCAP 01 (2016) 007 [arXiv:1508.06342] [INSPIRE].

    Article  ADS  Google Scholar 

  100. Z. Chacko, Y. Cui, S. Hong and T. Okui, Hidden dark matter sector, dark radiation, and the CMB, Phys. Rev. D 92 (2015) 055033 [arXiv:1505.04192] [INSPIRE].

  101. Planck collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, Astron. Astrophys. 641 (2020) A5 [arXiv:1907.12875] [INSPIRE].

  102. F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].

    Article  ADS  Google Scholar 

  103. A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [INSPIRE].

  104. BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].

  105. C. Brust, Y. Cui and K. Sigurdson, Cosmological Constraints on Interacting Light Particles, JCAP 08 (2017) 020 [arXiv:1703.10732] [INSPIRE].

    Article  ADS  Google Scholar 

  106. N. Blinov and G. Marques-Tavares, Interacting radiation after Planck and its implications for the Hubble Tension, JCAP 09 (2020) 029 [arXiv:2003.08387] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  107. S. Ghosh, S. Kumar and Y. Tsai, Free-streaming and Coupled Dark Radiation Isocurvature Perturbations: Constraints and Application to the Hubble Tension, arXiv:2107.09076 [INSPIRE].

  108. A. Mead, C. Heymans, L. Lombriser, J. Peacock, O. Steele and H. Winther, Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces, Mon. Not. Roy. Astron. Soc. 459 (2016) 1468 [arXiv:1602.02154] [INSPIRE].

    Article  ADS  Google Scholar 

  109. Z. Chacko, Y. Cui, S. Hong, T. Okui and Y. Tsai, Partially Acoustic Dark Matter, Interacting Dark Radiation, and Large Scale Structure, JHEP 12 (2016) 108 [arXiv:1609.03569] [INSPIRE].

  110. M. Raveri, W. Hu, T. Hoffman and L.-T. Wang, Partially Acoustic Dark Matter Cosmology and Cosmological Constraints, Phys. Rev. D 96 (2017) 103501 [arXiv:1709.04877] [INSPIRE].

  111. J. Lesgourgues, G. Marques-Tavares and M. Schmaltz, Evidence for dark matter interactions in cosmological precision data?, JCAP 02 (2016) 037 [arXiv:1507.04351] [INSPIRE].

    Article  ADS  Google Scholar 

  112. C. Dessert, C. Kilic, C. Trendafilova and Y. Tsai, Addressing Astrophysical and Cosmological Problems With Secretly Asymmetric Dark Matter, Phys. Rev. D 100 (2019) 015029 [arXiv:1811.05534] [INSPIRE].

  113. K.L. Pandey, T. Karwal and S. Das, Alleviating the H0 and σ8 anomalies with a decaying dark matter model, JCAP 07 (2020) 026 [arXiv:1902.10636] [INSPIRE].

    Article  ADS  Google Scholar 

  114. I.J. Allali, M.P. Hertzberg and F. Rompineve, Dark sector to restore cosmological concordance, Phys. Rev. D 104 (2021) L081303 [arXiv:2104.12798] [INSPIRE].

    Article  ADS  Google Scholar 

  115. S.J. Clark, K. Vattis, J. Fan and S.M. Koushiappas, The H0 and S8 tensions necessitate early and late time changes to ΛCDM, arXiv:2110.09562 [INSPIRE].

  116. Y.B. Zeldovich and R.A. Sunyaev, The Interaction of Matter and Radiation in a Hot-Model Universe, Astrophys. Space Sci. 4 (1969) 301 [INSPIRE].

  117. R.A. Sunyaev and Y.B. Zeldovich, Small-Scale Fluctuations of Relic Radiation, Astrophys. Space Sci. 7 (1970) 3.

    Article  ADS  Google Scholar 

  118. Planck collaboration, Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, Astron. Astrophys. 571 (2014) A20 [arXiv:1303.5080] [INSPIRE].

  119. Planck collaboration, Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts, Astron. Astrophys. 594 (2016) A24 [arXiv:1502.01597] [INSPIRE].

  120. M. Douspis, L. Salvati and N. Aghanim, On the Tension between Large Scale Structures and Cosmic Microwave Background, PoS EDSU2018 (2018) 037 [arXiv:1901.05289] [INSPIRE].

  121. A. Blanchard and S. Ilić, Closing up the cluster tension?, Astron. Astrophys. 656 (2021) A75 [arXiv:2104.00756] [INSPIRE].

    Article  ADS  Google Scholar 

  122. A. von der Linden et al., Robust Weak-lensing Mass Calibration of Planck Galaxy Clusters, Mon. Not. Roy. Astron. Soc. 443 (2014) 1973 [arXiv:1402.2670] [INSPIRE].

    Article  ADS  Google Scholar 

  123. K. Umetsu, Cluster-galaxy weak lensing, Astron. Astrophys. Rev. 28 (2020) 7 [arXiv:2007.00506] [INSPIRE].

    Article  ADS  Google Scholar 

  124. R.C. Nunes and S. Vagnozzi, Arbitrating the S8 discrepancy with growth rate measurements from redshift-space distortions, Mon. Not. Roy. Astron. Soc. 505 (2021) 5427 [arXiv:2106.01208] [INSPIRE].

    Article  ADS  Google Scholar 

  125. M. Garny, T. Konstandin, L. Sagunski and S. Tulin, Lyman-α forest constraints on interacting dark sectors, JCAP 09 (2018) 011 [arXiv:1805.12203] [INSPIRE].

    Article  ADS  Google Scholar 

  126. DES collaboration, Milky Way Satellite Census. III. Constraints on Dark Matter Properties from Observations of Milky Way Satellite Galaxies, Phys. Rev. Lett. 126 (2021) 091101 [arXiv:2008.00022] [INSPIRE].

  127. S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

    Article  MathSciNet  MATH  ADS  Google Scholar 

  128. M. Carena, N.M. Coyle, Y.-Y. Li, S.D. McDermott and Y. Tsai, Cosmologically Degenerate Fermions, arXiv:2108.02785 [INSPIRE].

  129. R. Murgia, A. Merle, M. Viel, M. Totzauer and A. Schneider, “Non-cold” dark matter at small scales: a general approach, JCAP 11 (2017) 046 [arXiv:1704.07838] [INSPIRE].

    Article  ADS  Google Scholar 

  130. H.-S. Goh and C.A. Krenke, A Little Twin Higgs Model, Phys. Rev. D 76 (2007) 115018 [arXiv:0707.3650] [INSPIRE].

  131. H. Beauchesne, K. Earl and T. Grégoire, The spontaneous ℤ2 breaking Twin Higgs, JHEP 01 (2016) 130 [arXiv:1510.06069] [INSPIRE].

    Article  ADS  Google Scholar 

  132. R. Harnik, K. Howe and J. Kearney, Tadpole-Induced Electroweak Symmetry Breaking and PNGB Higgs Models, JHEP 03 (2017) 111 [arXiv:1603.03772] [INSPIRE].

    Article  ADS  Google Scholar 

  133. R. Takahashi, M. Sato, T. Nishimichi, A. Taruya and M. Oguri, Revising the Halofit Model for the Nonlinear Matter Power Spectrum, Astrophys. J. 761 (2012) 152 [arXiv:1208.2701] [INSPIRE].

    Article  ADS  Google Scholar 

  134. CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion at the High-Luminosity LHC, Tech. Rep. CMS-PAS-FTR-18-016, CERN, Geneva (2018).

  135. CMS collaboration, Sensitivity projections for Higgs boson properties measurements at the HL-LHC, Tech. Rep. CMS-PAS-FTR-18-011, CERN, Geneva (2018).

  136. ATLAS collaboration, Projections for measurements of Higgs boson cross sections, branching ratios, coupling parameters and mass with the ATLAS detector at the HL-LHC, Tech. Rep. ATL-PHYS-PUB-2018-054, CERN, Geneva (2018).

  137. J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139 [arXiv:1905.03764] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics & Astronomy, University of Notre Dame, Notre Dame, IN, 46556, USA

    Saurabh Bansal, Christopher Kolda & Yuhsin Tsai

  2. Department of Physics, University of Cincinnati, Cincinnati, OH, 45221, USA

    Saurabh Bansal

  3. Department of Physics, Chungbuk National University, Chungbuk, 28644, Republic of Korea

    Jeong Han Kim

  4. Center for Theoretical Physics of the Universe, Institute for Basic Science, Daejeon, 34126, Republic of Korea

    Jeong Han Kim

  5. School of Physics, KIAS, Seoul, 02455, Republic of Korea

    Jeong Han Kim

  6. Theoretical Physics Department, Fermilab, Batavia, IL, 60510, USA

    Matthew Low

Authors
  1. Saurabh Bansal
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jeong Han Kim
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Christopher Kolda
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Matthew Low
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Yuhsin Tsai
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Matthew Low.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2110.04317

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bansal, S., Kim, J.H., Kolda, C. et al. Mirror twin Higgs cosmology: constraints and a possible resolution to the H0 and S8 tensions. J. High Energ. Phys. 2022, 50 (2022). https://doi.org/10.1007/JHEP05(2022)050

Download citation

  • Received: 17 November 2021

  • Revised: 25 March 2022

  • Accepted: 09 April 2022

  • Published: 09 May 2022

  • DOI: https://doi.org/10.1007/JHEP05(2022)050

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.