Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Searching for BSM physics in Yukawa couplings and flavour symmetries

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 06 May 2022
  • Volume 2022, article number 41, (2022)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Searching for BSM physics in Yukawa couplings and flavour symmetries
Download PDF
  • J. Alonso-González  ORCID: orcid.org/0000-0002-0345-38601,
  • A. de Giorgi  ORCID: orcid.org/0000-0002-9260-54661,
  • L. Merlo  ORCID: orcid.org/0000-0002-5876-41051 &
  • …
  • S. Pokorski2 
  • 297 Accesses

  • 1 Altmetric

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In the framework of the Standard Model Effective Field Theory, we compare the lower bounds on the scale of new physics possibly contributing to the \( f\overline{f}h \) effective couplings, obtained from the measurements of different observables, under the assumption that the Wilson coefficients of the relevant dim 6 operators respect certain flavour structure: either the Minimal Flavour Violation (MFV) ansatz or a flavour symmetry, often invoked to explain the observed pattern of fermion masses and mixings. We perform a global analysis of the bounds following from the limits on the diagonal couplings measured in the Higgs boson production and decays at the LHC experiments. Another set of bounds is obtained from the limits on non-diagonal couplings constrained by the variety of flavour changing neutral current (FCNC) and radiative decay processes. With the present precision of the LHC data, the FCNC data give stronger bounds on the scale of new physics than the collider data (obviously, for the MFV ansatz only collider data are relevant): once the Wilson coefficients respect some flavour structure, the obtained bounds are in the TeV range. In the quark case, these limits are compatible with a few percent deviations from the SM Yukawa couplings and only mildly more stringent than those obtained from the available collider data. For leptons, instead, the FCNC bounds are stronger and then a signal in the near future collider data would mean the violation of the flavour symmetry or indicate the presence of additional beyond the Standard Model contributions, affecting the flavour observables, that leads to cancellations.

Article PDF

Download to read the full article text

Similar content being viewed by others

Update of the flavour-physics constraints in the NMSSM

Article Open access 11 August 2016

Low-energy signatures of the PS3 model: from B-physics anomalies to LFV

Article Open access 24 October 2018

What is the scale of new physics behind the B-flavour anomalies?

Article Open access 10 August 2017
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  Google Scholar 

  3. F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys. A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].

  4. B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].

  5. R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP 05 (2010) 089 [arXiv:1002.1011] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett. B 722 (2013) 330 [Erratum ibid. 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].

  7. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, Flavor with a light dynamical “Higgs particle”, Phys. Rev. D 87 (2013) 055019 [arXiv:1212.3307] [INSPIRE].

  8. G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys. B 880 (2014) 552 [Erratum ibid. 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].

  9. I. Brivio et al., Disentangling a dynamical Higgs, JHEP 03 (2014) 024 [arXiv:1311.1823] [INSPIRE].

    Article  ADS  Google Scholar 

  10. I. Brivio, O.J.P. Éboli, M.B. Gavela, M.C. Gonzalez-Garcia, L. Merlo and S. Rigolin, Higgs ultraviolet softening, JHEP 12 (2014) 004 [arXiv:1405.5412] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M.B. Gavela, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin and J. Yepes, CP violation with a dynamical Higgs, JHEP 10 (2014) 044 [arXiv:1406.6367] [INSPIRE].

    Article  ADS  Google Scholar 

  12. R. Alonso, I. Brivio, B. Gavela, L. Merlo and S. Rigolin, Sigma Decomposition, JHEP 12 (2014) 034 [arXiv:1409.1589] [INSPIRE].

    Article  ADS  Google Scholar 

  13. I.M. Hierro, L. Merlo and S. Rigolin, Sigma Decomposition: The CP-Odd Lagrangian, JHEP 04 (2016) 016 [arXiv:1510.07899] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  14. B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J. C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE].

    Article  ADS  Google Scholar 

  15. I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].

    Article  ADS  Google Scholar 

  16. L. Merlo, S. Saa and M. Sacristán-Barbero, Baryon Non-Invariant Couplings in Higgs Effective Field Theory, Eur. Phys. J. C 77 (2017) 185 [arXiv:1612.04832] [INSPIRE].

    Article  ADS  Google Scholar 

  17. R.K. Ellis et al., Physics Briefing Book : Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775 [INSPIRE].

  18. R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].

  19. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  20. V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].

  21. S. Davidson and F. Palorini, Various definitions of Minimal Flavour Violation for Leptons, Phys. Lett. B 642 (2006) 72 [hep-ph/0607329] [INSPIRE].

  22. R. Alonso, G. Isidori, L. Merlo, L.A. Muñoz and E. Nardi, Minimal flavour violation extensions of the seesaw, JHEP 06 (2011) 037 [arXiv:1103.5461] [INSPIRE].

    Article  ADS  Google Scholar 

  23. Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Direct and indirect constraints on CP-violating Higgs-quark and Higgs-gluon interactions, JHEP 02 (2016) 011 [arXiv:1510.00725] [INSPIRE].

    Article  ADS  Google Scholar 

  24. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

  25. J. Alonso-González, L. Merlo and S. Pokorski, A new bound on CP-violation in the τ lepton Yukawa coupling and electroweak baryogenesis, JHEP 06 (2021) 166 [arXiv:2103.16569] [INSPIRE].

    Article  ADS  Google Scholar 

  26. F. Goertz, Indirect Handle on the Down-Quark Yukawa Coupling, Phys. Rev. Lett. 113 (2014) 261803 [arXiv:1406.0102] [INSPIRE].

  27. L. Calibbi, M.L. López-Ibáñez, A. Melis and O. Vives, Implications of the Muon g-2 result on the flavour structure of the lepton mass matrix, Eur. Phys. J. C 81 (2021) 929 [arXiv:2104.03296] [INSPIRE].

    Article  ADS  Google Scholar 

  28. X.-G. He, J. Tandean and Y.-J. Zheng, Higgs decay h → μτ with minimal flavor violation, JHEP 09 (2015) 093 [arXiv:1507.02673] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Baek and J. Tandean, Flavor-Changing Higgs Decays in Grand Unification with Minimal Flavor Violation, Eur. Phys. J. C 76 (2016) 673 [arXiv:1604.08935] [INSPIRE].

    Article  ADS  Google Scholar 

  30. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  31. M.E. Peskin, Estimation of LHC and ILC Capabilities for Precision Higgs Boson Coupling Measurements, in Community Summer Study 2013: Snowmass on the Mississippi, Minneapolis, U.S.A. (2013) [arXiv:1312.4974] [INSPIRE].

  32. G.P. Lepage, P.B. Mackenzie and M.E. Peskin, Expected Precision of Higgs Boson Partial Widths within the Standard Model, arXiv:1404.0319 [INSPIRE].

  33. J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M.E. Albrecht, T. Feldmann and T. Mannel, Goldstone Bosons in Effective Theories with Spontaneously Broken Flavour Symmetry, JHEP 10 (2010) 089 [arXiv:1002.4798] [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Alonso, M.B. Gavela, L. Merlo and S. Rigolin, On the scalar potential of minimal flavour violation, JHEP 07 (2011) 012 [arXiv:1103.2915] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Alonso, M.B. Gavela, D. Hernandez and L. Merlo, On the Potential of Leptonic Minimal Flavour Violation, Phys. Lett. B 715 (2012) 194 [arXiv:1206.3167] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Alonso, M.B. Gavela, D. Hernández, L. Merlo and S. Rigolin, Leptonic Dynamical Yukawa Couplings, JHEP 08 (2013) 069 [arXiv:1306.5922] [INSPIRE].

    Article  ADS  Google Scholar 

  38. B. Grinstein, M. Redi and G. Villadoro, Low Scale Flavor Gauge Symmetries, JHEP 11 (2010) 067 [arXiv:1009.2049] [INSPIRE].

    Article  ADS  Google Scholar 

  39. T. Feldmann, See-Saw Masses for Quarks and Leptons in SU(5), JHEP 04 (2011) 043 [arXiv:1010.2116] [INSPIRE].

    Article  ADS  Google Scholar 

  40. D. Guadagnoli, R.N. Mohapatra and I. Sung, Gauged Flavor Group with Left-Right Symmetry, JHEP 04 (2011) 093 [arXiv:1103.4170] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A.J. Buras, L. Merlo and E. Stamou, The Impact of Flavour Changing Neutral Gauge Bosons on \( \overline{B} \) → Xsγ, JHEP 08 (2011) 124 [arXiv:1105.5146] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011) 108 [arXiv:1106.6357] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A.J. Buras, M.V. Carlucci, L. Merlo and E. Stamou, Phenomenology of a Gauged SU(3)3 Flavour Model, JHEP 03 (2012) 088 [arXiv:1112.4477] [INSPIRE].

    Article  ADS  Google Scholar 

  44. R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, Minimal Flavour Violation with Strong Higgs Dynamics, JHEP 06 (2012) 076 [arXiv:1201.1511] [INSPIRE].

    Article  ADS  Google Scholar 

  45. L. Lopez-Honorez and L. Merlo, Dark matter within the minimal flavour violation ansatz, Phys. Lett. B 722 (2013) 135 [arXiv:1303.1087] [INSPIRE].

    Article  ADS  Google Scholar 

  46. R. Alonso, E. Fernandez Martínez, M.B. Gavela, B. Grinstein, L. Merlo and P. Quilez, Gauged Lepton Flavour, JHEP 12 (2016) 119 [arXiv:1609.05902] [INSPIRE].

  47. D.N. Dinh, L. Merlo, S.T. Petcov and R. Vega-Álvarez, Revisiting Minimal Lepton Flavour Violation in the Light of Leptonic CP-violation, JHEP 07 (2017) 089 [arXiv:1705.09284] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Arias-Aragon and L. Merlo, The Minimal Flavour Violating Axion, JHEP 10 (2017) 168 [Erratum ibid. 11 (2019) 152] [arXiv:1709.07039] [INSPIRE].

  49. L. Merlo and S. Rosauro-Alcaraz, Predictive Leptogenesis from Minimal Lepton Flavour Violation, JHEP 07 (2018) 036 [arXiv:1801.03937] [INSPIRE].

    Article  ADS  Google Scholar 

  50. F. Arias-Aragon, E. Fernandez-Martínez, M. Gonzalez-Lopez and L. Merlo, Neutrino Masses and Hubble Tension via a Majoron in MFV, Eur. Phys. J. C 81 (2021) 28 [arXiv:2009.01848] [INSPIRE].

    Article  ADS  Google Scholar 

  51. F. Arias-Aragón, E. Fernández-Martínez, M. González-López and L. Merlo, Dynamical Minimal Flavour Violating Inverse Seesaw, arXiv:2204.04672 [INSPIRE].

  52. G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].

    Article  ADS  Google Scholar 

  53. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

  54. E. Dudas, S. Pokorski and C.A. Savoy, Yukawa matrices from a spontaneously broken Abelian symmetry, Phys. Lett. B 356 (1995) 45 [hep-ph/9504292] [INSPIRE].

  55. P.H. Chankowski, K. Kowalska, S. Lavignac and S. Pokorski, Update on fermion mass models with an anomalous horizontal U(1) symmetry, Phys. Rev. D 71 (2005) 055004 [hep-ph/0501071] [INSPIRE].

  56. G. Altarelli, F. Feruglio and I. Masina, Models of neutrino masses: Anarchy versus hierarchy, JHEP 01 (2003) 035 [hep-ph/0210342] [INSPIRE].

  57. G. Altarelli, F. Feruglio, I. Masina and L. Merlo, Repressing Anarchy in Neutrino Mass Textures, JHEP 11 (2012) 139 [arXiv:1207.0587] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Bergstrom, D. Meloni and L. Merlo, Bayesian comparison of U(1) lepton flavor models, Phys. Rev. D 89 (2014) 093021 [arXiv:1403.4528] [INSPIRE].

  59. L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341] [INSPIRE].

  60. N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].

  61. A. de Gouvêa and H. Murayama, Statistical test of anarchy, Phys. Lett. B 573 (2003) 94 [hep-ph/0301050] [INSPIRE].

  62. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  63. E. Fuchs, M. Losada, Y. Nir and Y. Viernik, CP violation from τ, t and b dimension-6 Yukawa couplings - interplay of baryogenesis, EDM and Higgs physics, JHEP 05 (2020) 056 [arXiv:2003.00099] [INSPIRE].

  64. G. Panico, A. Pomarol and M. Riembau, EFT approach to the electron Electric Dipole Moment at the two-loop level, JHEP 04 (2019) 090 [arXiv:1810.09413] [INSPIRE].

    Article  ADS  Google Scholar 

  65. J. Brod and E. Stamou, Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order, JHEP 07 (2021) 080 [arXiv:1810.12303] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb−1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D 101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].

  67. CMS collaboration, Combined measurements of Higgs boson couplings in proton–proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 421 [arXiv:1809.10733] [INSPIRE].

  68. ATLAS collaboration, A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector, Phys. Lett. B 812 (2021) 135980 [arXiv:2007.07830] [INSPIRE].

  69. CMS collaboration, Evidence for Higgs boson decay to a pair of muons, JHEP 01 (2021) 148 [arXiv:2009.04363] [INSPIRE].

  70. CMS collaboration, A search for the standard model Higgs boson decaying to charm quarks, JHEP 03 (2020) 131 [arXiv:1912.01662] [INSPIRE].

  71. CMS collaboration, Measurements of the Higgs boson width and anomalous HVV couplings from on-shell and off-shell production in the four-lepton final state, Phys. Rev. D 99 (2019) 112003 [arXiv:1901.00174] [INSPIRE].

  72. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].

  73. S.Y. Choi, J.S. Lee and J. Park, Decays of Higgs bosons in the Standard Model and beyond, Prog. Part. Nucl. Phys. 120 (2021) 103880 [arXiv:2101.12435] [INSPIRE].

  74. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Constraining the charm Yukawa and Higgs-quark coupling universality, Phys. Rev. D 92 (2015) 033016 [arXiv:1503.00290] [INSPIRE].

  75. G. Perez, Y. Soreq, E. Stamou and K. Tobioka, Prospects for measuring the Higgs boson coupling to light quarks, Phys. Rev. D 93 (2016) 013001 [arXiv:1505.06689] [INSPIRE].

  76. R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].

    Article  ADS  Google Scholar 

  77. G. Blankenburg, J. Ellis and G. Isidori, Flavour-Changing Decays of a 125 GeV Higgs-like Particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

    Article  ADS  Google Scholar 

  78. CMS collaboration, Search for lepton-flavor violating decays of the Higgs boson in the μτ and eτ final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 104 (2021) 032013 [arXiv:2105.03007] [INSPIRE].

  79. COMET collaboration, Conceptual Design Report for Experimental Search for Lepton Flavor Violating μ → e Conversion at Sensitivity of 10−16 with a Slow-Extracted Bunched Proton Beam (Comet), KEK-2009-10 (2009).

  80. J.S. Lee et al., CPsuperH: A Computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [INSPIRE].

  81. E. Arganda, A.M. Curiel, M.J. Herrero and D. Temes, Lepton flavor violating Higgs boson decays from massive seesaw neutrinos, Phys. Rev. D 71 (2005) 035011 [hep-ph/0407302] [INSPIRE].

  82. A.L. Kagan, G. Perez, F. Petriello, Y. Soreq, S. Stoynev and J. Zupan, Exclusive Window onto Higgs Yukawa Couplings, Phys. Rev. Lett. 114 (2015) 101802 [arXiv:1406.1722] [INSPIRE].

  83. ATLAS collaboration, Search for the Higgs boson decays H → ee and H → eμ in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B 801 (2020) 135148 [arXiv:1909.10235] [INSPIRE].

  84. W.-S. Hou, Tree level t → ch or h → \( t\overline{c} \) decays, Phys. Lett. B 296 (1992) 179 [INSPIRE].

  85. ATLAS collaboration, Search for flavour-changing neutral current top quark decays t → Hq in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 12 (2015) 061 [arXiv:1509.06047] [INSPIRE].

  86. CMS collaboration, Combined Multilepton and Diphoton Limit on t → ch, CMS-PAS-HIG-13-034 (2014).

Download references

Author information

Authors and Affiliations

  1. Departamento de Física Teórica and Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain

    J. Alonso-González, A. de Giorgi & L. Merlo

  2. Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL 02-093, Warsaw, Poland

    S. Pokorski

Authors
  1. J. Alonso-González
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. de Giorgi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. L. Merlo
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Pokorski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. de Giorgi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2109.07490

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-González, J., de Giorgi, A., Merlo, L. et al. Searching for BSM physics in Yukawa couplings and flavour symmetries. J. High Energ. Phys. 2022, 41 (2022). https://doi.org/10.1007/JHEP05(2022)041

Download citation

  • Received: 28 September 2021

  • Revised: 31 December 2021

  • Accepted: 18 April 2022

  • Published: 06 May 2022

  • DOI: https://doi.org/10.1007/JHEP05(2022)041

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Higgs Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature