Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

The flavor of UV physics

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 27 May 2021
  • Volume 2021, article number 257, (2021)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
The flavor of UV physics
Download PDF
  • Sebastian Bruggisser1,
  • Ruth Schäfer  ORCID: orcid.org/0000-0002-6442-85381,
  • Danny van Dyk2 &
  • …
  • Susanne Westhoff1 

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

A preprint version of the article is available at arXiv.

Abstract

New physics not far above the TeV scale should leave a pattern of virtual effects in observables at lower energies. What do these effects tell us about the flavor structure of a UV theory? Within the framework of the Standard Model Effective Field Theory (SMEFT), we resolve the flavor structure of the Wilson coefficients in a combined analysis of top-quark and B-physics observables. We assume that the Yukawa couplings are the only sources of flavor symmetry breaking, a framework known as Minimal Flavor Violation. Our fits to LHC and b-factory measurements show that combining top and bottom observables is crucial to pin down possible sources of flavor breaking in a UV theory. This analysis includes the full analytic expansion of SMEFT coefficients in Minimal Flavor Violation and a detailed study of SMEFT effects in b → s flavor transitions.

Article PDF

Download to read the full article text

Similar content being viewed by others

Wrinkles in the Froggatt-Nielsen mechanism and flavorful new physics

Article Open access 11 October 2023

Resolving the flavor structure in the MFV-SMEFT

Article Open access 22 February 2023

Reading the footprints of the B-meson flavor anomalies

Article Open access 11 August 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].

    Article  ADS  Google Scholar 

  2. B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  3. I. Brivio and M. Trott, The standard model as an effective field theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Dawson, S. Homiller and S.D. Lane, Putting standard model EFT fits to work, Phys. Rev. D 102 (2020) 055012 [arXiv:2007.01296] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. David and G. Passarino, Use and reuse of SMEFT, arXiv:2009.00127 [INSPIRE].

  6. J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You, Top, Higgs, diboson and electroweak fit to the standard model effective field theory, JHEP 04 (2021) 279 [arXiv:2012.02779] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. U. Banerjee, J. Chakrabortty, S. Prakash, S.U. Rahaman and M. Spannowsky, Effective operator bases for beyond standard model scenarios: an EFT compendium for discoveries, JHEP 01 (2021) 028 [arXiv:2008.11512] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Das Bakshi, J. Chakrabortty and M. Spannowsky, Classifying standard model extensions effectively with precision observables, Phys. Rev. D 103 (2021) 056019 [arXiv:2012.03839] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C. Zhang and S.-Y. Zhou, Convex geometry perspective on the (standard model) effective field theory space, Phys. Rev. Lett. 125 (2020) 201601 [arXiv:2005.03047] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Chakrabortty, S. Prakash, S.U. Rahaman and M. Spannowsky, Uncovering the root of LEFT in SMEFT, arXiv:2011.00859 [INSPIRE].

  11. T. Feldmann and T. Mannel, Large top mass and non-linear representation of flavour symmetry, Phys. Rev. Lett. 100 (2008) 171601 [arXiv:0801.1802] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

  13. G. Eilam, J.L. Hewett and A. Soni, Rare decays of the top quark in the standard and two Higgs doublet models, Phys. Rev. D 44 (1991) 1473 [Erratum ibid. 59 (1999) 039901] [INSPIRE].

  14. B. Mele, S. Petrarca and A. Soddu, A New evaluation of the t → cH decay width in the standard model, Phys. Lett. B 435 (1998) 401 [hep-ph/9805498] [INSPIRE].

  15. A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

  16. G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

  17. R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  18. A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].

  20. D.A. Faroughy, G. Isidori, F. Wilsch and K. Yamamoto, Flavour symmetries in the SMEFT, JHEP 08 (2020) 166 [arXiv:2005.05366] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. J.L. Hewett and T.G. Rizzo, Using b → sγ to probe top quark couplings, Phys. Rev. D 49 (1994) 319 [hep-ph/9305223] [INSPIRE].

  22. B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].

  23. J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [Erratum ibid. 88 (2013) 039903] [arXiv:1107.3143] [INSPIRE].

  24. J. Drobnak, S. Fajfer and J.F. Kamenik, Probing anomalous tWb interactions with rare B decays, Nucl. Phys. B 855 (2012) 82 [arXiv:1109.2357] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. J. Brod, A. Greljo, E. Stamou and P. Uttayarat, Probing anomalous \( t\overline{t} \)Z interactions with rare meson decays, JHEP 02 (2015) 141 [arXiv:1408.0792] [INSPIRE].

    Article  ADS  Google Scholar 

  26. J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A global likelihood for precision constraints and flavour anomalies, Eur. Phys. J. C 79 (2019) 509 [arXiv:1810.07698] [INSPIRE].

    Article  ADS  Google Scholar 

  27. L. Silvestrini and M. Valli, Model-independent bounds on the standard model effective theory from flavour physics, Phys. Lett. B 799 (2019) 135062 [arXiv:1812.10913] [INSPIRE].

    Article  Google Scholar 

  28. J. Aebischer, C. Bobeth, A.J. Buras and J. Kumar, SMEFT ATLAS of ∆F = 2 transitions, JHEP 12 (2020) 187 [arXiv:2009.07276] [INSPIRE].

    ADS  Google Scholar 

  29. P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev. D 78 (2008) 054008 [arXiv:0704.1482] [INSPIRE].

    Article  ADS  Google Scholar 

  30. V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the standard model effective field theory, Phys. Rev. D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Alioli, V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Right-handed charged currents in the era of the Large Hadron Col lider, JHEP 05 (2017) 086 [arXiv:1703.04751] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Biekoetter, T. Corbett and T. Plehn, The gauge-Higgs legacy of the LHC Run II, SciPost Phys. 6 (2019) 064 [arXiv:1812.07587] [INSPIRE].

    Article  ADS  Google Scholar 

  33. S. Bißmann, J. Erdmann, C. Grunwald, G. Hiller and K. Kröninger, Constraining top-quark couplings combining top-quark and B decay observables, Eur. Phys. J. C 80 (2020) 136 [arXiv:1909.13632] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Falkowski and D. Straub, Flavourful SMEFT likelihood for Higgs and electroweak data, JHEP 04 (2020) 066 [arXiv:1911.07866] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Aoude, T. Hurth, S. Renner and W. Shepherd, The impact of flavour data on global fits of the MFV SMEFT, JHEP 12 (2020) 113 [arXiv:2003.05432] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Bißmann, C. Grunwald, G. Hiller and K. Kröninger, Top and beauty synergies in SMEFT-fits at present and future col liders, arXiv:2012.10456 [INSPIRE].

  37. C. Zhang and S. Willenbrock, Effective-field-theory approach to top-quark production and decay, Phys. Rev. D 83 (2011) 034006 [arXiv:1008.3869] [INSPIRE].

    Article  ADS  Google Scholar 

  38. S. Faller, S. Gadatsch and T. Mannel, Minimal flavor violation and anomalous top decays, Phys. Rev. D 88 (2013) 035006 [arXiv:1304.2675] [INSPIRE].

    Article  ADS  Google Scholar 

  39. R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP 07 (2014) 091 [Erratum ibid. 09 (2015) 132] [arXiv:1404.1005] [INSPIRE].

  40. R. Röntsch and M. Schulze, Probing top-Z dipole moments at the LHC and ILC, JHEP 08 (2015) 044 [arXiv:1501.05939] [INSPIRE].

    Article  ADS  Google Scholar 

  41. O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the standard model effective field theory at NLO in QCD, JHEP 05 (2016) 052 [arXiv:1601.08193] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A. Buckley et al., Constraining top quark effective theory in the LHC Run II era, JHEP 04 (2016) 015 [arXiv:1512.03360] [INSPIRE].

    ADS  Google Scholar 

  43. I. Brivio et al., O new physics, where art thou? A global search in the top sector, JHEP 02 (2020) 131 [arXiv:1910.03606] [INSPIRE].

    Article  ADS  Google Scholar 

  44. N.P. Hartland et al., A Monte Carlo global analysis of the standard model effective field theory: the top quark sector, JHEP 04 (2019) 100 [arXiv:1901.05965] [INSPIRE].

    Article  ADS  Google Scholar 

  45. G. Durieux et al., The electro-weak couplings of the top and bottom quarks — Global fit and future prospects, JHEP 12 (2019) 98 [Erratum ibid. 01 (2021) 195] [arXiv:1907.10619] [INSPIRE].

  46. J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for b → s and b → c transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].

    Article  ADS  Google Scholar 

  47. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: operators and matching, JHEP 03 (2018) 016 [arXiv:1709.04486] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. W. Dekens and P. Stoffer, Low-energy effective field theory below the electroweak scale: matching at one loop, JHEP 10 (2019) 197 [arXiv:1908.05295] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. T. Hurth, S. Renner and W. Shepherd, Matching for FCNC effects in the flavour-symmetric SMEFT, JHEP 06 (2019) 029 [arXiv:1903.00500] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Endo, S. Mishima and D. Ueda, Revisiting electroweak radiative corrections to b → sℓℓ in SMEFT, JHEP 05 (2021) 050 [arXiv:2012.06197] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Aebischer, M. Fael, C. Greub and J. Virto, B physics beyond the standard model at one loop: complete renormalization group evolution below the electroweak scale, JHEP 09 (2017) 158 [arXiv:1704.06639] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. E.E. Jenkins, A.V. Manohar and P. Stoffer, Low-energy effective field theory below the electroweak scale: anomalous dimensions, JHEP 01 (2018) 084 [arXiv:1711.05270] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  53. J. Fuentes-Martin, P. Ruiz-Femenia, A. Vicente and J. Virto, DsixTools 2.0: the effective field theory toolkit, Eur. Phys. J. C 81 (2021) 167 [arXiv:2010.16341] [INSPIRE].

  54. A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General minimal flavor violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].

    Article  ADS  Google Scholar 

  55. D. van Dyk et al., EOS — A HEP program for flavour observables, https://eos.github.io/.

  56. J. Aebischer et al., WCxf: an exchange format for Wilson coefficients beyond the Standard Model, Comput. Phys. Commun. 232 (2018) 71 [arXiv:1712.05298] [INSPIRE].

    Article  ADS  Google Scholar 

  57. M. Beneke, T. Feldmann and D. Seidel, Systematic approach to exclusive B → V l+ l− , V γ decays, Nucl. Phys. B 612 (2001) 25 [hep-ph/0106067] [INSPIRE].

  58. Particle Data Group collaboration, Review of particle physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  59. J. Lyon and R. Zwicky, Resonances gone topsy turvy — The charm of QCD or new physics in b → sℓ+ ℓ− ?, arXiv:1406.0566 [INSPIRE].

  60. M. Ciuchini et al., B → K ∗ ℓ+ ℓ− decays at large recoil in the Standard Model: a theoretical reappraisal, JHEP 06 (2016) 116 [arXiv:1512.07157] [INSPIRE].

    Article  ADS  Google Scholar 

  61. B. Capdevila, S. Descotes-Genon, L. Hofer and J. Matias, Hadronic uncertainties in B → K ∗ μ+ μ− : a state-of-the-art analysis, JHEP 04 (2017) 016 [arXiv:1701.08672] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Jäger, M. Kirk, A. Lenz and K. Leslie, Charming new physics in rare B-decays and mixing?, Phys. Rev. D 97 (2018) 015021 [arXiv:1701.09183] [INSPIRE].

    Article  ADS  Google Scholar 

  63. C. Bobeth, M. Chrzaszcz, D. van Dyk and J. Virto, Long-distance effects in B → K ∗ ℓℓ from analyticity, Eur. Phys. J. C 78 (2018) 451 [arXiv:1707.07305] [INSPIRE].

    Article  ADS  Google Scholar 

  64. A. Arbey, T. Hurth, F. Mahmoudi and S. Neshatpour, Hadronic and new physics contributions to b → s transitions, Phys. Rev. D 98 (2018) 095027 [arXiv:1806.02791] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Gubernari, D. Van Dyk and J. Virto, Non-local matrix elements in B(s) → {K(∗) , φ}ℓ+ ℓ− , JHEP 02 (2021) 088 [arXiv:2011.09813] [INSPIRE].

  66. M. Ciuchini, M. Fedele, E. Franco, A. Paul, L. Silvestrini and M. Valli, Lessons from the B0,+ → K∗0,+ μ+ μ− angular analyses, Phys. Rev. D 103 (2021) 015030 [arXiv:2011.01212] [INSPIRE].

    Article  ADS  Google Scholar 

  67. R. Alonso, B. Grinstein and J. Martin Camalich, SU(2) × U(1) gauge invariance and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802 [arXiv:1407.7044] [INSPIRE].

    Article  ADS  Google Scholar 

  68. O. Catà and M. Jung, Signatures of a nonstandard Higgs boson from flavor physics, Phys. Rev. D 92 (2015) 055018 [arXiv:1505.05804] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S. Descotes-Genon, A. Falkowski, M. Fedele, M. González-Alonso and J. Virto, The CKM parameters in the SMEFT, JHEP 05 (2019) 172 [arXiv:1812.08163] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. J. Aebischer, J. Kumar and D.M. Straub, Wilson: a Python package for the running and matching of Wilson coefficients above and below the electroweak scale, Eur. Phys. J. C 78 (2018) 1026 [arXiv:1804.05033] [INSPIRE].

    Article  ADS  Google Scholar 

  71. C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and mt dependence of BR[B → Xsl+ l− ], Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].

  72. C. Bobeth, P. Gambino, M. Gorbahn and U. Haisch, Complete NNLO QCD analysis of \( \overline{B} \) → X (s)ℓ+ ℓ− and higher order electroweak effects, JHEP 04 (2004) 071 [hep-ph/0312090] [INSPIRE].

  73. T. Huber, E. Lunghi, M. Misiak and D. Wyler, Electromagnetic logarithms in \( \overline{B} \) → Xs l+ l− , Nucl. Phys. B 740 (2006) 105 [hep-ph/0512066] [INSPIRE].

  74. C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, Bs,d → l+ l− in the Standard Model with reduced theoretical uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].

  75. G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev. D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].

    Article  ADS  Google Scholar 

  76. D. Egana-Ugrinovic, S. Homiller and P. Meade, Aligned and spontaneous flavor violation, Phys. Rev. Lett. 123 (2019) 031802 [arXiv:1811.00017] [INSPIRE].

    Article  ADS  Google Scholar 

  77. C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation, JHEP 10 (2018) 005 [arXiv:1804.07773] [INSPIRE].

    Article  ADS  Google Scholar 

  78. M.P. Rosello and M. Vos, Constraints on four-fermion interactions from the \( t\overline{t} \) charge asymmetry at hadron col liders, Eur. Phys. J. C 76 (2016) 200 [arXiv:1512.07542] [INSPIRE].

    Article  ADS  Google Scholar 

  79. S. Berge and S. Westhoff, Top-quark charge asymmetry with a jet handle, Phys. Rev. D 86 (2012) 094036 [arXiv:1208.4104] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A. Basan, P. Berta, L. Masetti, E. Vryonidou and S. Westhoff, Measuring the top energy asymmetry at the LHC: QCD and SMEFT interpretations, JHEP 03 (2020) 184 [arXiv:2001.07225] [INSPIRE].

    Article  ADS  Google Scholar 

  81. R. Lafaye, T. Plehn and D. Zerwas, SFITTER: SUSY parameter analysis at LHC and LC, hep-ph/0404282 [INSPIRE].

  82. R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring supersymmetry, Eur. Phys. J. C 54 (2008) 617 [arXiv:0709.3985] [INSPIRE].

    Article  ADS  Google Scholar 

  83. R. Lafaye, T. Plehn, M. Rauch, D. Zerwas and M. Dührssen, Measuring the Higgs sector, JHEP 08 (2009) 009 [arXiv:0904.3866] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].

    Article  ADS  Google Scholar 

  85. T. Corbett, O.J.P. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn and M. Rauch, The Higgs Legacy of the LHC Run I, JHEP 08 (2015) 156 [arXiv:1505.05516] [INSPIRE].

    Article  ADS  Google Scholar 

  86. A. Butter et al., The gauge-Higgs legacy of the LHC Run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].

    Article  ADS  Google Scholar 

  87. A. Hocker, H. Lacker, S. Laplace and F. Le Diberder, A new approach to a global fit of the CKM matrix, Eur. Phys. J. C 21 (2001) 225 [hep-ph/0104062] [INSPIRE].

  88. ATLAS collaboration, Study of the rare decays of \( {B}_s^0 \) and B0 mesons into muon pairs using data col lected during 2015 and 2016 with the ATLAS detector, JHEP 04 (2019) 098 [arXiv:1812.03017] [INSPIRE].

  89. CMS collaboration, Measurement of properties of B0 → μ+ μ− decays and search for B0 → μ+ μ− with the CMS experiment, JHEP 04 (2020) 188 [arXiv:1910.12127] [INSPIRE].

  90. LHCb collaboration, Measurement of the \( {B}_s^0 \) → μ+ μ− branching fraction and effective lifetime and search for B0 → μ+ μ− decays, Phys. Rev. Lett. 118 (2017) 191801 [arXiv:1703.05747] [INSPIRE].

  91. LHCb collaboration, Combination of the ATLAS, CMS and LHCb results on the \( {B}_{(s)}^0 \) → μ+ μ− decays, LHCb-CONF-2020-002 (2020).

  92. BaBar collaboration, Measurement of the B → Xsγ branching fraction and photon energy spectrum using the recoil method, Phys. Rev. D 77 (2008) 051103 [arXiv:0711.4889] [INSPIRE].

  93. BaBar collaboration, Precision Measurement of the B → Xsγ Photon Energy Spectrum, Branching Fraction, and Direct CP Asymmetry AC P (B → Xs+dγ), Phys. Rev. Lett. 109 (2012) 191801 [arXiv:1207.2690] [INSPIRE].

  94. BaBar collaboration, Exclusive measurements of b → sγ transition rate and photon energy spectrum, Phys. Rev. D 86 (2012) 052012 [arXiv:1207.2520] [INSPIRE].

  95. Belle collaboration, Measurement of inclusive radiative B-meson decays with a photon energy threshold of 1.7 GeV, Phys. Rev. Lett. 103 (2009) 241801 [arXiv:0907.1384] [INSPIRE].

  96. Belle collaboration, Measurement of the \( \overline{B} \) → Xsγ branching fraction with a sum of exclusive decays, Phys. Rev. D 91 (2015) 052004 [arXiv:1411.7198] [INSPIRE].

  97. CLEO collaboration, Branching fraction and photon energy spectrum for b → sγ, Phys. Rev. Lett. 87 (2001) 251807 [hep-ex/0108032] [INSPIRE].

  98. HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of 2018, Eur. Phys. J. C 81 (2021) 226 [arXiv:1909.12524] [INSPIRE].

  99. M. Misiak, A. Rehman and M. Steinhauser, Towards \( \overline{B} \) → Xsγ at the NNLO in QCD without interpolation in mc , JHEP 06 (2020) 175 [arXiv:2002.01548] [INSPIRE].

    Article  ADS  Google Scholar 

  100. C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the SMEFT, arXiv:2008.11743 [INSPIRE].

  101. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  102. C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, Chin. Phys. C 42 (2018) 023104 [arXiv:1708.05928] [INSPIRE].

    Article  ADS  Google Scholar 

  103. G. Banelli, E. Salvioni, J. Serra, T. Theil and A. Weiler, The present and future of four top Operators, JHEP 02 (2021) 043 [arXiv:2010.05915] [INSPIRE].

    Article  ADS  Google Scholar 

  104. S. Alte, M. König and W. Shepherd, Consistent searches for SMEFT effects in non-resonant dijet events, JHEP 01 (2018) 094 [arXiv:1711.07484] [INSPIRE].

    Article  ADS  Google Scholar 

  105. J. Ellis, C.W. Murphy, V. Sanz and T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data, JHEP 06 (2018) 146 [arXiv:1803.03252] [INSPIRE].

    Article  ADS  Google Scholar 

  106. T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to Bs → μ+ μ− , JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].

    Article  ADS  Google Scholar 

  107. C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to Bs,d → ℓ+ ℓ− , Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].

  108. A. Bazavov et al., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98 (2018) 074512 [arXiv:1712.09262] [INSPIRE].

  109. UTfit collaboration, The unitarity triangle fit in the standard model and hadronic parameters from lattice QCD: a reappraisal after the measurements of ∆m(s) and BR(B → τ ντ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].

  110. A. Ali and T. Mannel, Exclusive rare B decays in the heavy quark limit, Phys. Lett. B 264 (1991) 447 [Erratum ibid. 274 (1992) 526] [INSPIRE].

  111. A. Gunawardana and G. Paz, Reevaluating uncertainties in \( \overline{B} \) → Xsγ decay, JHEP 11 (2019) 141 [arXiv:1908.02812] [INSPIRE].

    Article  ADS  Google Scholar 

  112. M. Dimou, J. Lyon and R. Zwicky, Exclusive chromomagnetism in heavy-to-light FCNCs, Phys. Rev. D 87 (2013) 074008 [arXiv:1212.2242] [INSPIRE].

    Article  ADS  Google Scholar 

  113. J. Lyon and R. Zwicky, Isospin asymmetries in B → (K ∗ , ρ)γ/l+ l− and B → K l+ l− in and beyond the standard model, Phys. Rev. D 88 (2013) 094004 [arXiv:1305.4797] [INSPIRE].

  114. M. Beneke, T. Feldmann and D. Seidel, Exclusive radiative and electroweak b → d and b → s penguin decays at NLO, Eur. Phys. J. C 41 (2005) 173 [hep-ph/0412400] [INSPIRE].

  115. A. Khodjamirian, T. Mannel, A.A. Pivovarov and Y.M. Wang, Charm-loop effect in B → K (∗) ℓ+ ℓ− and B → K ∗ γ, JHEP 09 (2010) 089 [arXiv:1006.4945] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  116. A. Khodjamirian, T. Mannel and Y.M. Wang, B → K ℓ+ ℓ− decay at large hadronic recoil, JHEP 02 (2013) 010 [arXiv:1211.0234] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Theoretical Physics, Heidelberg University, 69120, Heidelberg, Germany

    Sebastian Bruggisser, Ruth Schäfer & Susanne Westhoff

  2. Physik Department, Technische Universität München, 85748, Garching, Germany

    Danny van Dyk

Authors
  1. Sebastian Bruggisser
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ruth Schäfer
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Danny van Dyk
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Susanne Westhoff
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ruth Schäfer.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.07273

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruggisser, S., Schäfer, R., van Dyk, D. et al. The flavor of UV physics. J. High Energ. Phys. 2021, 257 (2021). https://doi.org/10.1007/JHEP05(2021)257

Download citation

  • Received: 30 January 2021

  • Revised: 16 April 2021

  • Accepted: 11 May 2021

  • Published: 27 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)257

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Effective Field Theories
  • Heavy Quark Physics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature