Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Jet wake from linearized hydrodynamics
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma

08 January 2020

J. Casalderrey-Solana, G. Milhano, … K. Rajagopal

Initial state fluctuations and the sub-leading flow modes from the experimental data and HYDJET++ model

12 January 2021

J. Milosevic

Jet radiation in a longitudinally expanding medium

21 April 2021

P. Caucal, E. Iancu & G. Soyez

Hybrid model with viscous relativistic hydrodynamics: a role of constraints on the shear-stress tensor

20 October 2021

A. S. Khvorostukhin, E. E. Kolomeitsev & V. D. Toneev

Elliptic flow and $$R_{AA}$$ R AA of $$\text {D}$$ D mesons at FAIR comparing the UrQMD hybrid model and the coarse-graining approach

21 January 2019

Gabriele Inghirami, Hendrik van Hees, … Marcus Bleicher

QGP modification to single inclusive jets in a calibrated transport model

06 May 2021

Weiyao Ke & Xin-Nian Wang

Extracting jet transport parameter $$\hat{q}$$q^ from a multiphase transport model

27 February 2020

Feng-Chu Zhou, Guo-Liang Ma & Yu-Gang Ma

Scaling behaviors of heavy flavor meson suppression and flow in different nuclear collision systems at the LHC

26 November 2021

Shu-Qing Li, Wen-Jing Xing, … Guang-You Qin

Analytical solution of magneto-hydrodynamics with acceleration effects of Bjorken expansion in heavy-ion collisions

22 December 2021

A. F. Kord, A. Ghaani & M. Haddadi Moghaddam

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 25 May 2021

Jet wake from linearized hydrodynamics

  • Jorge Casalderrey-Solana1,
  • José Guilherme Milhano2,3,
  • Daniel Pablos4,
  • Krishna Rajagopal5 &
  • …
  • Xiaojun Yao  ORCID: orcid.org/0000-0002-8377-22035 

Journal of High Energy Physics volume 2021, Article number: 230 (2021) Cite this article

  • 180 Accesses

  • 10 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We explore how to improve the hybrid model description of the particles originating from the wake that a jet produced in a heavy ion collision leaves in the droplet of quark-gluon plasma (QGP) through which it propagates, using linearized hydrodynamics on a background Bjorken flow. Jet energy and momentum loss described by the hybrid model become currents sourcing linearized hydrodynamics. By solving the linearized hydrodynamic equations numerically, we investigate the development of the wake in the dynamically evolving droplet of QGP, study the effect of viscosity, scrutinize energy-momentum conservation, and check the validity of the linear approximation. We find that linearized hydrodynamics works better in the viscous case because diffusive modes damp the energy-momentum perturbation produced by the jet. We calculate the distribution of particles produced from the jet wake by using the Cooper-Frye prescription and find that both the transverse momentum spectrum and the distribution of particles in azimuthal angle are similar in shape in linearized hydrodynamics and in the hybrid model. Their normalizations are different because the momentum-rapidity distribution in the linearized hydrodynamics analysis is more spread out, due to sound modes. Since the Bjorken flow has no transverse expansion, we explore the effect of transverse flow by using local boosts to add it into the Cooper-Frye formula. After including the effects of transverse flow in this way, the transverse momentum spectrum becomes harder: more particles with transverse momenta bigger than 2 GeV are produced than in the hybrid model. Although we defer implementing this analysis in a jet Monte Carlo, as would be needed to make quantitative comparisons to data, we gain a qualitative sense of how the jet wake may modify jet observables by computing proxies for two example observables: the lost energy recovered in a cone of varying open angle, and the fragmentation function. We find that linearized hydrodynamics with transverse flow effects added improves the description of the jet wake in the hybrid model in just the way that comparison to data indicates is needed. Our study illuminates a path to improving the description of the wake in the hybrid model, highlighting the need to take into account the effects of both transverse flow and the broadening of the energy-momentum perturbation in spacetime rapidity on particle production.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. Gyulassy and X.-N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].

    Article  ADS  Google Scholar 

  2. X.-N. Wang, M. Gyulassy and M. Plumer, The LPM effect in QCD and radiative energy loss in a quark gluon plasma, Phys. Rev. D 51 (1995) 3436 [hep-ph/9408344] [INSPIRE].

    Article  ADS  Google Scholar 

  3. R. Baier, Y. L. Dokshitzer, S. Peigne and D. Schiff, Induced gluon radiation in a QCD medium, Phys. Lett. B 345 (1995) 277 [hep-ph/9411409] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].

    Article  ADS  Google Scholar 

  5. B. G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Gyulassy, P. Levai and I. Vitev, Jet quenching in thin quark gluon plasmas. 1. Formalism, Nucl. Phys. B 571 (2000) 197 [hep-ph/9907461] [INSPIRE].

  8. M. Gyulassy, P. Levai and I. Vitev, Non-Abelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].

    Article  ADS  Google Scholar 

  9. U. A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].

  10. X.-F. Guo and X.-N. Wang, Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett. 85 (2000) 3591 [hep-ph/0005044] [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. X.-N. Wang and X.-F. Guo, Multiple parton scattering in nuclei: parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].

  13. P. B. Arnold, G. D. Moore and L. G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Jeon and G. D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev. C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Majumder, B. Müller and X.-N. Wang, Small shear viscosity of a quark-gluon plasma implies strong jet quenching, Phys. Rev. Lett. 99 (2007) 192301 [hep-ph/0703082] [INSPIRE].

    Article  ADS  Google Scholar 

  16. Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].

    Article  ADS  Google Scholar 

  17. J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].

    Article  ADS  Google Scholar 

  18. Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, Jets in QCD media: from color coherence to decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Ovanesyan and I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung, JHEP 06 (2011) 080 [arXiv:1103.1074] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dilute medium, JHEP 04 (2012) 064 [arXiv:1112.5031] [INSPIRE].

    Article  ADS  Google Scholar 

  21. Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dense medium, JHEP 10 (2012) 197 [arXiv:1205.5739] [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.-P. Blaizot, E. Iancu and Y. Mehtar-Tani, Medium-induced QCD cascade: democratic branching and wave turbulence, Phys. Rev. Lett. 111 (2013) 052001 [arXiv:1301.6102] [INSPIRE].

    Article  ADS  Google Scholar 

  23. J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Probabilistic picture for medium-induced jet evolution, JHEP 06 (2014) 075 [arXiv:1311.5823] [INSPIRE].

    Article  ADS  Google Scholar 

  24. J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].

  25. J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos and K. Rajagopal, Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].

    Article  ADS  Google Scholar 

  26. Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann transport for jet propagation in the quark-gluon plasma: elastic processes and medium recoil, Phys. Rev. C 91 (2015) 054908 [Erratum ibid. 97 (2018) 019902] [arXiv:1503.03313] [INSPIRE].

  27. J. Ghiglieri and D. Teaney, Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas, Int. J. Mod. Phys. E 24 (2015) 1530013 [arXiv:1502.03730] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. J. Ghiglieri, G. D. Moore and D. Teaney, Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma, JHEP 03 (2016) 095 [arXiv:1509.07773] [INSPIRE].

    Article  ADS  Google Scholar 

  29. J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular structure of jet quenching within a hybrid strong/weak coupling model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].

    Article  ADS  Google Scholar 

  30. JETSCAPE collaboration, Multistage Monte-Carlo simulation of jet modification in a static medium, Phys. Rev. C 96 (2017) 024909 [arXiv:1705.00050] [INSPIRE].

  31. Z. Hulcher, D. Pablos and K. Rajagopal, Resolution effects in the hybrid strong/weak coupling model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].

    Article  ADS  Google Scholar 

  32. Y. Mehtar-Tani and K. Tywoniuk, Sudakov suppression of jets in QCD media, Phys. Rev. D 98 (2018) 051501 [arXiv:1707.07361] [INSPIRE].

    Article  ADS  Google Scholar 

  33. P. Caucal, E. Iancu, A. H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos and K. Rajagopal, Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].

    Article  ADS  Google Scholar 

  35. Y. He, S. Cao, W. Chen, T. Luo, L.-G. Pang and X.-N. Wang, Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 054911 [arXiv:1809.02525] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Casalderrey-Solana, G. Milhano, D. Pablos and K. Rajagopal, Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma, JHEP 01 (2020) 044 [arXiv:1907.11248] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Gyulassy and X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307 [nucl-th/9502021] [INSPIRE].

  38. I. P. Lokhtin and A. M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC, Eur. Phys. J. C 45 (2006) 211 [hep-ph/0506189] [INSPIRE].

  39. T. Renk, Parton shower evolution in a 3D hydrodynamical medium, Phys. Rev. C 78 (2008) 034908 [arXiv:0806.0305] [INSPIRE].

    Article  ADS  Google Scholar 

  40. I. P. Lokhtin, L. V. Malinina, S. V. Petrushanko, A. M. Snigirev, I. Arsene and K. Tywoniuk, Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs), Comput. Phys. Commun. 180 (2009) 779 [arXiv:0809.2708] [INSPIRE].

    Article  ADS  Google Scholar 

  41. N. Armesto, L. Cunqueiro and C. A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Schenke, C. Gale and S. Jeon, MARTINI: an event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. C. Zapp, J. Stachel and U. A. Wiedemann, A local Monte Carlo framework for coherent QCD parton energy loss, JHEP 07 (2011) 118 [arXiv:1103.6252] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  44. K. C. Zapp, F. Krauss and U. A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].

    Article  ADS  Google Scholar 

  45. K. C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].

  46. A. Majumder, Incorporating space-time within medium-modified jet event generators, Phys. Rev. C 88 (2013) 014909 [arXiv:1301.5323] [INSPIRE].

    Article  ADS  Google Scholar 

  47. T. Renk, Space-time structure of the energy deposition into the bulk medium due to jet quenching, Phys. Rev. C 88 (2013) 044905 [arXiv:1306.2739] [INSPIRE].

    Article  ADS  Google Scholar 

  48. X.-N. Wang and Y. Zhu, Medium modification of γ-jets in high-energy heavy-ion collisions, Phys. Rev. Lett. 111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies, Phys. Lett. B 777 (2018) 255 [arXiv:1703.00822] [INSPIRE].

    Article  ADS  Google Scholar 

  50. S. Cao and A. Majumder, Nuclear modification of leading hadrons and jets within a virtuality ordered parton shower, Phys. Rev. C 101 (2020) 024903 [arXiv:1712.10055] [INSPIRE].

    Article  ADS  Google Scholar 

  51. W. Ke, Y. Xu and S. A. Bass, Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region, Phys. Rev. C 100 (2019) 064911 [arXiv:1810.08177] [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. H. Putschke et al., The JETSCAPE framework, arXiv:1903.07706 [INSPIRE].

  53. T. Dai, S. A. Bass, J.-F. Paquet and D. Teaney, Hard scatterings and stochastic reformulation of parton energy loss, PoS(High-pT2019)031 (2020).

  54. P. Caucal, E. Iancu and G. Soyez, Deciphering the zg distribution in ultrarelativistic heavy ion collisions, JHEP 10 (2019) 273 [arXiv:1907.04866] [INSPIRE].

    Article  ADS  Google Scholar 

  55. P. Caucal, E. Iancu, A. H. Mueller and G. Soyez, Nuclear modification factors for jet fragmentation, JHEP 10 (2020) 204 [arXiv:2005.05852] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Casalderrey-Solana, E. V. Shuryak and D. Teaney, Conical flow induced by quenched QCD jets, J. Phys. Conf. Ser. 27 (2005) 22 [hep-ph/0411315] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Ruppert and B. Müller, Waking the colored plasma, Phys. Lett. B 618 (2005) 123 [hep-ph/0503158] [INSPIRE].

    Article  ADS  Google Scholar 

  58. J. Casalderrey-Solana, E. V. Shuryak and D. Teaney, Hydrodynamic flow from fast particles, hep-ph/0602183 [INSPIRE].

  59. R. B. Neufeld, B. Müller and J. Ruppert, Sonic Mach cones induced by fast partons in a perturbative quark-gluon plasma, Phys. Rev. C 78 (2008) 041901 [arXiv:0802.2254] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Ayala, I. Dominguez and M. E. Tejeda-Yeomans, Head shock vs Mach cone: azimuthal correlations from 2 → 3 parton processes in relativistic heavy-ion collisions, Phys. Rev. C 88 (2013) 025203 [arXiv:1212.1127] [INSPIRE].

    Article  ADS  Google Scholar 

  61. A. Ayala, J. D. Castaño-Yepes, I. Dominguez and M. E. Tejeda-Yeomans, Impact of the energy-loss spatial profile and shear-viscosity to entropy-density ratio for the Mach cone versus head-shock signals produced by a fast-moving parton in a quark-gluon plasma, Phys. Rev. C 92 (2015) 024910 [arXiv:1412.5879] [INSPIRE].

    Article  ADS  Google Scholar 

  62. R. B. Neufeld, Mach cones in the quark-gluon plasma: viscosity, speed of sound, and effects of finite source structure, Phys. Rev. C 79 (2009) 054909 [arXiv:0807.2996] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G.-Y. Qin, A. Majumder, H. Song and U. Heinz, Energy and momentum deposited into a QCD medium by a jet shower, Phys. Rev. Lett. 103 (2009) 152303 [arXiv:0903.2255] [INSPIRE].

    Article  ADS  Google Scholar 

  64. R. B. Neufeld and B. Müller, The sound produced by a fast parton in the quark-gluon plasma is a ‘crescendo’, Phys. Rev. Lett. 103 (2009) 042301 [arXiv:0902.2950] [INSPIRE].

    Article  ADS  Google Scholar 

  65. L. Yan, S. Jeon and C. Gale, Jet-medium interaction and conformal relativistic fluid dynamics, Phys. Rev. C 97 (2018) 034914 [arXiv:1707.09519] [INSPIRE].

    Article  ADS  Google Scholar 

  66. A. K. Chaudhuri and U. Heinz, Effect of jet quenching on the hydrodynamical evolution of QGP, Phys. Rev. Lett. 97 (2006) 062301 [nucl-th/0503028] [INSPIRE].

  67. B. Betz, J. Noronha, G. Torrieri, M. Gyulassy and D. H. Rischke, Universal flow-driven conical emission in ultrarelativistic heavy-ion collisions, Phys. Rev. Lett. 105 (2010) 222301 [arXiv:1005.5461] [INSPIRE].

    Article  ADS  Google Scholar 

  68. S. Floerchinger and K. C. Zapp, Hydrodynamics and jets in dialogue, Eur. Phys. J. C 74 (2014) 3189 [arXiv:1407.1782] [INSPIRE].

    Article  Google Scholar 

  69. Y. Tachibana and T. Hirano, Momentum transport away from a jet in an expanding nuclear medium, Phys. Rev. C 90 (2014) 021902 [arXiv:1402.6469] [INSPIRE].

    Article  ADS  Google Scholar 

  70. Y. Tachibana, C. Shen and A. Majumder, Bulk medium evolution has considerable effects on jet observables!, arXiv:2001.08321 [INSPIRE].

  71. W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions, Phys. Lett. B 777 (2018) 86 [arXiv:1704.03648] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  72. J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  73. C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  74. H. Liu, K. Rajagopal and U. A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].

    Article  ADS  Google Scholar 

  75. J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].

  76. S. S. Gubser, Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory and QCD, Phys. Rev. D 76 (2007) 126003 [hep-th/0611272] [INSPIRE].

    Article  ADS  Google Scholar 

  77. H. Liu, K. Rajagopal and U. A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  78. J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a N = 4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  79. P. M. Chesler and L. G. Yaffe, The wake of a quark moving through a strongly-coupled plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [INSPIRE].

    Article  ADS  Google Scholar 

  80. S. S. Gubser, S. S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [INSPIRE].

    Article  ADS  Google Scholar 

  81. P. M. Chesler and L. G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. S. Gubser, D. R. Gulotta, S. S. Pufu and F. D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Y. Hatta, E. Iancu and A. H. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [INSPIRE].

    Article  ADS  Google Scholar 

  84. F. Dominguez, C. Marquet, A. H. Mueller, B. Wu and B.-W. Xiao, Comparing energy loss and pT-broadening in perturbative QCD with strong coupling N = 4 SYM theory, Nucl. Phys. A 811 (2008) 197 [arXiv:0803.3234] [INSPIRE].

    Article  ADS  Google Scholar 

  85. P. M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [INSPIRE].

    Article  ADS  Google Scholar 

  86. P. M. Chesler, K. Jensen, A. Karch and L. G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].

    Article  ADS  Google Scholar 

  87. S. S. Gubser, S. S. Pufu, F. D. Rocha and A. Yarom, Energy loss in a strongly coupled thermal medium and the gauge-string duality, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., World Scientific, Singapore (2010) [arXiv:0902.4041] [INSPIRE].

  88. F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].

    Article  ADS  Google Scholar 

  89. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories revisited: 3-point correlators with gauge-gravity duality, JHEP 10 (2010) 099 [arXiv:1008.4023] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [INSPIRE].

    Article  ADS  Google Scholar 

  91. P. M. Chesler, Y.-Y. Ho and K. Rajagopal, Shining a gluon beam through quark-gluon plasma, Phys. Rev. D 85 (2012) 126006 [arXiv:1111.1691] [INSPIRE].

    Article  ADS  Google Scholar 

  92. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge, U.K. (2014) [arXiv:1101.0618] [INSPIRE].

    Book  MATH  Google Scholar 

  93. P. Arnold, P. Szepietowski and D. Vaman, Coupling dependence of jet quenching in hot strongly-coupled gauge theories, JHEP 07 (2012) 024 [arXiv:1203.6658] [INSPIRE].

    Article  ADS  Google Scholar 

  94. P. M. Chesler, M. Lekaveckas and K. Rajagopal, Heavy quark energy loss far from equilibrium in a strongly coupled collision, JHEP 10 (2013) 013 [arXiv:1306.0564] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. O. DeWolfe, S. S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].

    Article  ADS  Google Scholar 

  96. A. Ficnar, S. S. Gubser and M. Gyulassy, Shooting string holography of jet quenching at RHIC and LHC, Phys. Lett. B 738 (2014) 464 [arXiv:1311.6160] [INSPIRE].

    Article  ADS  Google Scholar 

  97. P. M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].

    Article  ADS  Google Scholar 

  98. P. M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys. E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  99. P. M. Chesler and K. Rajagopal, On the evolution of jet energy and opening angle in strongly coupled plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].

    Article  ADS  Google Scholar 

  100. J. Casalderrey-Solana and A. Ficnar, Holographic three-jet events in strongly coupled N = 4 Yang-Mills plasma, arXiv:1512.00371 [INSPIRE].

  101. K. Rajagopal, A. V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].

    Article  ADS  Google Scholar 

  102. J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].

    Article  ADS  Google Scholar 

  103. CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].

  104. CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE].

  105. CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE].

  106. H. Song and U. W. Heinz, Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic heavy-ion collisions, Phys. Rev. C 77 (2008) 064901 [arXiv:0712.3715] [INSPIRE].

    Article  ADS  Google Scholar 

  107. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  108. J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].

    Article  ADS  Google Scholar 

  109. S. Jeon and U. Heinz, Introduction to hydrodynamics, Int. J. Mod. Phys. E 24 (2015) 1530010 [arXiv:1503.03931] [INSPIRE].

    Article  ADS  Google Scholar 

  110. P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, Cambridge University Press, Cambridge, U.K. (2019) [arXiv:1712.05815] [INSPIRE].

    Book  MATH  Google Scholar 

  111. P. M. Chesler and L. G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  112. M. P. Heller, R. A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].

    Article  ADS  Google Scholar 

  113. A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].

    Article  ADS  Google Scholar 

  114. P. M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett. 115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].

    Article  ADS  Google Scholar 

  115. P. M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146 [arXiv:1601.01583] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture, and the big questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].

    Article  ADS  Google Scholar 

  117. W. Florkowski, M. P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  118. M. P. Heller and M. Spalinski, Hydrodynamics beyond the gradient expansion: resurgence and resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].

    Article  ADS  Google Scholar 

  119. M. Strickland, J. Noronha and G. Denicol, Anisotropic nonequilibrium hydrodynamic attractor, Phys. Rev. D 97 (2018) 036020 [arXiv:1709.06644] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  120. J.-P. Blaizot and L. Yan, Emergence of hydrodynamical behavior in expanding ultra-relativistic plasmas, Annals Phys. 412 (2020) 167993 [arXiv:1904.08677] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  121. S. Jaiswal, C. Chattopadhyay, A. Jaiswal, S. Pal and U. Heinz, Exact solutions and attractors of higher-order viscous fluid dynamics for Bjorken flow, Phys. Rev. C 100 (2019) 034901 [arXiv:1907.07965] [INSPIRE].

    Article  ADS  Google Scholar 

  122. A. Kurkela, W. van der Schee, U. A. Wiedemann and B. Wu, Early- and late-time behavior of attractors in heavy-ion collisions, Phys. Rev. Lett. 124 (2020) 102301 [arXiv:1907.08101] [INSPIRE].

    Article  ADS  Google Scholar 

  123. J. Brewer, L. Yan and Y. Yin, Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma, Phys. Lett. B 816 (2021) 136189 [arXiv:1910.00021] [INSPIRE].

    Article  Google Scholar 

  124. HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].

  125. D. Pablos, Jet suppression from a small to intermediate to large radius, Phys. Rev. Lett. 124 (2020) 052301 [arXiv:1907.12301] [INSPIRE].

    Article  ADS  Google Scholar 

  126. R. Baier, P. Romatschke and U. A. Wiedemann, Dissipative hydrodynamics and heavy ion collisions, Phys. Rev. C 73 (2006) 064903 [hep-ph/0602249] [INSPIRE].

    Article  ADS  Google Scholar 

  127. W. M. Serenone et al., Λ polarization from thermalized jet energy, arXiv:2102.11919 [INSPIRE].

  128. F. Cooper and G. Frye, Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production, Phys. Rev. D 10 (1974) 186 [INSPIRE].

    Article  ADS  Google Scholar 

  129. Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].

    Article  ADS  Google Scholar 

  130. R. Kunnawalkam Elayavalli and K. C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].

    Article  ADS  Google Scholar 

  131. G. Milhano, U. A. Wiedemann and K. C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett. B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].

    Article  ADS  Google Scholar 

  132. C. Park, S. Jeon and C. Gale, Jet modification with medium recoil in quark-gluon plasma, Nucl. Phys. A 982 (2019) 643 [arXiv:1807.06550] [INSPIRE].

    Article  ADS  Google Scholar 

  133. JETSCAPE collaboration, Jet substructure modifications in a QGP from multi-scale description of jet evolution with JETSCAPE, PoS(HardProbes2018)099 (2018) [arXiv:1812.06366] [INSPIRE].

  134. N.-B. Chang, Y. Tachibana and G.-Y. Qin, Nuclear modification of jet shape for inclusive jets and γ-jets at the LHC energies, Phys. Lett. B 801 (2020) 135181 [arXiv:1906.09562] [INSPIRE].

    Article  Google Scholar 

  135. W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Medium modification of γ-jet fragmentation functions in Pb+Pb collisions at LHC, Phys. Lett. B 810 (2020) 135783 [arXiv:2005.09678] [INSPIRE].

    Article  Google Scholar 

  136. J. Brewer, Q. Brodsky and K. Rajagopal, Disentangling jet modification, in 10th international conference on hard and electromagnetic probes of high-energy nuclear collisions: hard probes 2020, (2020) [arXiv:2009.03316] [INSPIRE].

  137. D. Pablos, Jet suppression from small to large radius, in 10th international conference on hard and electromagnetic probes of high-energy nuclear collisions: hard probes 2020, (2020) [arXiv:2009.02202] [INSPIRE].

  138. S. Floerchinger and U. A. Wiedemann, Mode-by-mode fluid dynamics for relativistic heavy ion collisions, Phys. Lett. B 728 (2014) 407 [arXiv:1307.3453] [INSPIRE].

    Article  ADS  Google Scholar 

  139. S. Floerchinger and U. A. Wiedemann, Kinetic freeze-out, particle spectra and harmonic flow coefficients from mode-by-mode hydrodynamics, Phys. Rev. C 89 (2014) 034914 [arXiv:1311.7613] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departament de Física Quàntica i Astrofísica & Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain

    Jorge Casalderrey-Solana

  2. LIP, Av. Prof. Gama Pinto, 2, P-1649-003, Lisboa, Portugal

    José Guilherme Milhano

  3. Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, P-1049-001, Lisbon, Portugal

    José Guilherme Milhano

  4. University of Bergen, Postboks 7803, 5020, Bergen, Norway

    Daniel Pablos

  5. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

    Krishna Rajagopal & Xiaojun Yao

Authors
  1. Jorge Casalderrey-Solana
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. José Guilherme Milhano
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Daniel Pablos
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Krishna Rajagopal
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Xiaojun Yao
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Xiaojun Yao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.01140

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casalderrey-Solana, J., Milhano, J.G., Pablos, D. et al. Jet wake from linearized hydrodynamics. J. High Energ. Phys. 2021, 230 (2021). https://doi.org/10.1007/JHEP05(2021)230

Download citation

  • Received: 14 October 2020

  • Revised: 11 March 2021

  • Accepted: 06 May 2021

  • Published: 25 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)230

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heavy Ion Phenomenology
  • Jets
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.