Abstract
We explore how to improve the hybrid model description of the particles originating from the wake that a jet produced in a heavy ion collision leaves in the droplet of quark-gluon plasma (QGP) through which it propagates, using linearized hydrodynamics on a background Bjorken flow. Jet energy and momentum loss described by the hybrid model become currents sourcing linearized hydrodynamics. By solving the linearized hydrodynamic equations numerically, we investigate the development of the wake in the dynamically evolving droplet of QGP, study the effect of viscosity, scrutinize energy-momentum conservation, and check the validity of the linear approximation. We find that linearized hydrodynamics works better in the viscous case because diffusive modes damp the energy-momentum perturbation produced by the jet. We calculate the distribution of particles produced from the jet wake by using the Cooper-Frye prescription and find that both the transverse momentum spectrum and the distribution of particles in azimuthal angle are similar in shape in linearized hydrodynamics and in the hybrid model. Their normalizations are different because the momentum-rapidity distribution in the linearized hydrodynamics analysis is more spread out, due to sound modes. Since the Bjorken flow has no transverse expansion, we explore the effect of transverse flow by using local boosts to add it into the Cooper-Frye formula. After including the effects of transverse flow in this way, the transverse momentum spectrum becomes harder: more particles with transverse momenta bigger than 2 GeV are produced than in the hybrid model. Although we defer implementing this analysis in a jet Monte Carlo, as would be needed to make quantitative comparisons to data, we gain a qualitative sense of how the jet wake may modify jet observables by computing proxies for two example observables: the lost energy recovered in a cone of varying open angle, and the fragmentation function. We find that linearized hydrodynamics with transverse flow effects added improves the description of the jet wake in the hybrid model in just the way that comparison to data indicates is needed. Our study illuminates a path to improving the description of the wake in the hybrid model, highlighting the need to take into account the effects of both transverse flow and the broadening of the energy-momentum perturbation in spacetime rapidity on particle production.
References
M. Gyulassy and X.-N. Wang, Multiple collisions and induced gluon Bremsstrahlung in QCD, Nucl. Phys. B 420 (1994) 583 [nucl-th/9306003] [INSPIRE].
X.-N. Wang, M. Gyulassy and M. Plumer, The LPM effect in QCD and radiative energy loss in a quark gluon plasma, Phys. Rev. D 51 (1995) 3436 [hep-ph/9408344] [INSPIRE].
R. Baier, Y. L. Dokshitzer, S. Peigne and D. Schiff, Induced gluon radiation in a QCD medium, Phys. Lett. B 345 (1995) 277 [hep-ph/9411409] [INSPIRE].
R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma, Nucl. Phys. B 483 (1997) 291 [hep-ph/9607355] [INSPIRE].
B. G. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD, JETP Lett. 63 (1996) 952 [hep-ph/9607440] [INSPIRE].
R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne and D. Schiff, Radiative energy loss and pT broadening of high-energy partons in nuclei, Nucl. Phys. B 484 (1997) 265 [hep-ph/9608322] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Jet quenching in thin quark gluon plasmas. 1. Formalism, Nucl. Phys. B 571 (2000) 197 [hep-ph/9907461] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Non-Abelian energy loss at finite opacity, Phys. Rev. Lett. 85 (2000) 5535 [nucl-th/0005032] [INSPIRE].
U. A. Wiedemann, Gluon radiation off hard quarks in a nuclear environment: opacity expansion, Nucl. Phys. B 588 (2000) 303 [hep-ph/0005129] [INSPIRE].
X.-F. Guo and X.-N. Wang, Multiple scattering, parton energy loss and modified fragmentation functions in deeply inelastic eA scattering, Phys. Rev. Lett. 85 (2000) 3591 [hep-ph/0005044] [INSPIRE].
M. Gyulassy, P. Levai and I. Vitev, Reaction operator approach to non-Abelian energy loss, Nucl. Phys. B 594 (2001) 371 [nucl-th/0006010] [INSPIRE].
X.-N. Wang and X.-F. Guo, Multiple parton scattering in nuclei: parton energy loss, Nucl. Phys. A 696 (2001) 788 [hep-ph/0102230] [INSPIRE].
P. B. Arnold, G. D. Moore and L. G. Yaffe, Photon and gluon emission in relativistic plasmas, JHEP 06 (2002) 030 [hep-ph/0204343] [INSPIRE].
S. Jeon and G. D. Moore, Energy loss of leading partons in a thermal QCD medium, Phys. Rev. C 71 (2005) 034901 [hep-ph/0309332] [INSPIRE].
A. Majumder, B. Müller and X.-N. Wang, Small shear viscosity of a quark-gluon plasma implies strong jet quenching, Phys. Rev. Lett. 99 (2007) 192301 [hep-ph/0703082] [INSPIRE].
Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media, Phys. Rev. Lett. 106 (2011) 122002 [arXiv:1009.2965] [INSPIRE].
J. Casalderrey-Solana and E. Iancu, Interference effects in medium-induced gluon radiation, JHEP 08 (2011) 015 [arXiv:1105.1760] [INSPIRE].
Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, Jets in QCD media: from color coherence to decoherence, Phys. Lett. B 707 (2012) 156 [arXiv:1102.4317] [INSPIRE].
G. Ovanesyan and I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung, JHEP 06 (2011) 080 [arXiv:1103.1074] [INSPIRE].
Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dilute medium, JHEP 04 (2012) 064 [arXiv:1112.5031] [INSPIRE].
Y. Mehtar-Tani, C. A. Salgado and K. Tywoniuk, The radiation pattern of a QCD antenna in a dense medium, JHEP 10 (2012) 197 [arXiv:1205.5739] [INSPIRE].
J.-P. Blaizot, E. Iancu and Y. Mehtar-Tani, Medium-induced QCD cascade: democratic branching and wave turbulence, Phys. Rev. Lett. 111 (2013) 052001 [arXiv:1301.6102] [INSPIRE].
J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, Probabilistic picture for medium-induced jet evolution, JHEP 06 (2014) 075 [arXiv:1311.5823] [INSPIRE].
J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos and K. Rajagopal, A hybrid strong/weak coupling approach to jet quenching, JHEP 10 (2014) 019 [Erratum ibid. 09 (2015) 175] [arXiv:1405.3864] [INSPIRE].
J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano, D. Pablos and K. Rajagopal, Predictions for boson-jet observables and fragmentation function ratios from a hybrid strong/weak coupling model for jet quenching, JHEP 03 (2016) 053 [arXiv:1508.00815] [INSPIRE].
Y. He, T. Luo, X.-N. Wang and Y. Zhu, Linear Boltzmann transport for jet propagation in the quark-gluon plasma: elastic processes and medium recoil, Phys. Rev. C 91 (2015) 054908 [Erratum ibid. 97 (2018) 019902] [arXiv:1503.03313] [INSPIRE].
J. Ghiglieri and D. Teaney, Parton energy loss and momentum broadening at NLO in high temperature QCD plasmas, Int. J. Mod. Phys. E 24 (2015) 1530013 [arXiv:1502.03730] [INSPIRE].
J. Ghiglieri, G. D. Moore and D. Teaney, Jet-medium interactions at NLO in a weakly-coupled quark-gluon plasma, JHEP 03 (2016) 095 [arXiv:1509.07773] [INSPIRE].
J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pablos and K. Rajagopal, Angular structure of jet quenching within a hybrid strong/weak coupling model, JHEP 03 (2017) 135 [arXiv:1609.05842] [INSPIRE].
JETSCAPE collaboration, Multistage Monte-Carlo simulation of jet modification in a static medium, Phys. Rev. C 96 (2017) 024909 [arXiv:1705.00050] [INSPIRE].
Z. Hulcher, D. Pablos and K. Rajagopal, Resolution effects in the hybrid strong/weak coupling model, JHEP 03 (2018) 010 [arXiv:1707.05245] [INSPIRE].
Y. Mehtar-Tani and K. Tywoniuk, Sudakov suppression of jets in QCD media, Phys. Rev. D 98 (2018) 051501 [arXiv:1707.07361] [INSPIRE].
P. Caucal, E. Iancu, A. H. Mueller and G. Soyez, Vacuum-like jet fragmentation in a dense QCD medium, Phys. Rev. Lett. 120 (2018) 232001 [arXiv:1801.09703] [INSPIRE].
J. Casalderrey-Solana, Z. Hulcher, G. Milhano, D. Pablos and K. Rajagopal, Simultaneous description of hadron and jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 051901 [arXiv:1808.07386] [INSPIRE].
Y. He, S. Cao, W. Chen, T. Luo, L.-G. Pang and X.-N. Wang, Interplaying mechanisms behind single inclusive jet suppression in heavy-ion collisions, Phys. Rev. C 99 (2019) 054911 [arXiv:1809.02525] [INSPIRE].
J. Casalderrey-Solana, G. Milhano, D. Pablos and K. Rajagopal, Modification of jet substructure in heavy ion collisions as a probe of the resolution length of quark-gluon plasma, JHEP 01 (2020) 044 [arXiv:1907.11248] [INSPIRE].
M. Gyulassy and X.-N. Wang, HIJING 1.0: a Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307 [nucl-th/9502021] [INSPIRE].
I. P. Lokhtin and A. M. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-pT hadron spectra at RHIC, Eur. Phys. J. C 45 (2006) 211 [hep-ph/0506189] [INSPIRE].
T. Renk, Parton shower evolution in a 3D hydrodynamical medium, Phys. Rev. C 78 (2008) 034908 [arXiv:0806.0305] [INSPIRE].
I. P. Lokhtin, L. V. Malinina, S. V. Petrushanko, A. M. Snigirev, I. Arsene and K. Tywoniuk, Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs), Comput. Phys. Commun. 180 (2009) 779 [arXiv:0809.2708] [INSPIRE].
N. Armesto, L. Cunqueiro and C. A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation, Eur. Phys. J. C 63 (2009) 679 [arXiv:0907.1014] [INSPIRE].
B. Schenke, C. Gale and S. Jeon, MARTINI: an event generator for relativistic heavy-ion collisions, Phys. Rev. C 80 (2009) 054913 [arXiv:0909.2037] [INSPIRE].
K. C. Zapp, J. Stachel and U. A. Wiedemann, A local Monte Carlo framework for coherent QCD parton energy loss, JHEP 07 (2011) 118 [arXiv:1103.6252] [INSPIRE].
K. C. Zapp, F. Krauss and U. A. Wiedemann, A perturbative framework for jet quenching, JHEP 03 (2013) 080 [arXiv:1212.1599] [INSPIRE].
K. C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys. J. C 74 (2014) 2762 [arXiv:1311.0048] [INSPIRE].
A. Majumder, Incorporating space-time within medium-modified jet event generators, Phys. Rev. C 88 (2013) 014909 [arXiv:1301.5323] [INSPIRE].
T. Renk, Space-time structure of the energy deposition into the bulk medium due to jet quenching, Phys. Rev. C 88 (2013) 044905 [arXiv:1306.2739] [INSPIRE].
X.-N. Wang and Y. Zhu, Medium modification of γ-jets in high-energy heavy-ion collisions, Phys. Rev. Lett. 111 (2013) 062301 [arXiv:1302.5874] [INSPIRE].
S. Cao, T. Luo, G.-Y. Qin and X.-N. Wang, Heavy and light flavor jet quenching at RHIC and LHC energies, Phys. Lett. B 777 (2018) 255 [arXiv:1703.00822] [INSPIRE].
S. Cao and A. Majumder, Nuclear modification of leading hadrons and jets within a virtuality ordered parton shower, Phys. Rev. C 101 (2020) 024903 [arXiv:1712.10055] [INSPIRE].
W. Ke, Y. Xu and S. A. Bass, Modified Boltzmann approach for modeling the splitting vertices induced by the hot QCD medium in the deep Landau-Pomeranchuk-Migdal region, Phys. Rev. C 100 (2019) 064911 [arXiv:1810.08177] [INSPIRE].
J. H. Putschke et al., The JETSCAPE framework, arXiv:1903.07706 [INSPIRE].
T. Dai, S. A. Bass, J.-F. Paquet and D. Teaney, Hard scatterings and stochastic reformulation of parton energy loss, PoS(High-pT2019)031 (2020).
P. Caucal, E. Iancu and G. Soyez, Deciphering the zg distribution in ultrarelativistic heavy ion collisions, JHEP 10 (2019) 273 [arXiv:1907.04866] [INSPIRE].
P. Caucal, E. Iancu, A. H. Mueller and G. Soyez, Nuclear modification factors for jet fragmentation, JHEP 10 (2020) 204 [arXiv:2005.05852] [INSPIRE].
J. Casalderrey-Solana, E. V. Shuryak and D. Teaney, Conical flow induced by quenched QCD jets, J. Phys. Conf. Ser. 27 (2005) 22 [hep-ph/0411315] [INSPIRE].
J. Ruppert and B. Müller, Waking the colored plasma, Phys. Lett. B 618 (2005) 123 [hep-ph/0503158] [INSPIRE].
J. Casalderrey-Solana, E. V. Shuryak and D. Teaney, Hydrodynamic flow from fast particles, hep-ph/0602183 [INSPIRE].
R. B. Neufeld, B. Müller and J. Ruppert, Sonic Mach cones induced by fast partons in a perturbative quark-gluon plasma, Phys. Rev. C 78 (2008) 041901 [arXiv:0802.2254] [INSPIRE].
A. Ayala, I. Dominguez and M. E. Tejeda-Yeomans, Head shock vs Mach cone: azimuthal correlations from 2 → 3 parton processes in relativistic heavy-ion collisions, Phys. Rev. C 88 (2013) 025203 [arXiv:1212.1127] [INSPIRE].
A. Ayala, J. D. Castaño-Yepes, I. Dominguez and M. E. Tejeda-Yeomans, Impact of the energy-loss spatial profile and shear-viscosity to entropy-density ratio for the Mach cone versus head-shock signals produced by a fast-moving parton in a quark-gluon plasma, Phys. Rev. C 92 (2015) 024910 [arXiv:1412.5879] [INSPIRE].
R. B. Neufeld, Mach cones in the quark-gluon plasma: viscosity, speed of sound, and effects of finite source structure, Phys. Rev. C 79 (2009) 054909 [arXiv:0807.2996] [INSPIRE].
G.-Y. Qin, A. Majumder, H. Song and U. Heinz, Energy and momentum deposited into a QCD medium by a jet shower, Phys. Rev. Lett. 103 (2009) 152303 [arXiv:0903.2255] [INSPIRE].
R. B. Neufeld and B. Müller, The sound produced by a fast parton in the quark-gluon plasma is a ‘crescendo’, Phys. Rev. Lett. 103 (2009) 042301 [arXiv:0902.2950] [INSPIRE].
L. Yan, S. Jeon and C. Gale, Jet-medium interaction and conformal relativistic fluid dynamics, Phys. Rev. C 97 (2018) 034914 [arXiv:1707.09519] [INSPIRE].
A. K. Chaudhuri and U. Heinz, Effect of jet quenching on the hydrodynamical evolution of QGP, Phys. Rev. Lett. 97 (2006) 062301 [nucl-th/0503028] [INSPIRE].
B. Betz, J. Noronha, G. Torrieri, M. Gyulassy and D. H. Rischke, Universal flow-driven conical emission in ultrarelativistic heavy-ion collisions, Phys. Rev. Lett. 105 (2010) 222301 [arXiv:1005.5461] [INSPIRE].
S. Floerchinger and K. C. Zapp, Hydrodynamics and jets in dialogue, Eur. Phys. J. C 74 (2014) 3189 [arXiv:1407.1782] [INSPIRE].
Y. Tachibana and T. Hirano, Momentum transport away from a jet in an expanding nuclear medium, Phys. Rev. C 90 (2014) 021902 [arXiv:1402.6469] [INSPIRE].
Y. Tachibana, C. Shen and A. Majumder, Bulk medium evolution has considerable effects on jet observables!, arXiv:2001.08321 [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions, Phys. Lett. B 777 (2018) 86 [arXiv:1704.03648] [INSPIRE].
J. M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz and L. G. Yaffe, Energy loss of a heavy quark moving through N = 4 supersymmetric Yang-Mills plasma, JHEP 07 (2006) 013 [hep-th/0605158] [INSPIRE].
H. Liu, K. Rajagopal and U. A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT, Phys. Rev. Lett. 97 (2006) 182301 [hep-ph/0605178] [INSPIRE].
J. Casalderrey-Solana and D. Teaney, Heavy quark diffusion in strongly coupled N = 4 Yang-Mills, Phys. Rev. D 74 (2006) 085012 [hep-ph/0605199] [INSPIRE].
S. S. Gubser, Comparing the drag force on heavy quarks in N = 4 super-Yang-Mills theory and QCD, Phys. Rev. D 76 (2007) 126003 [hep-th/0611272] [INSPIRE].
H. Liu, K. Rajagopal and U. A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT, JHEP 03 (2007) 066 [hep-ph/0612168] [INSPIRE].
J. Casalderrey-Solana and D. Teaney, Transverse momentum broadening of a fast quark in a N = 4 Yang-Mills plasma, JHEP 04 (2007) 039 [hep-th/0701123] [INSPIRE].
P. M. Chesler and L. G. Yaffe, The wake of a quark moving through a strongly-coupled plasma, Phys. Rev. Lett. 99 (2007) 152001 [arXiv:0706.0368] [INSPIRE].
S. S. Gubser, S. S. Pufu and A. Yarom, Sonic booms and diffusion wakes generated by a heavy quark in thermal AdS/CFT, Phys. Rev. Lett. 100 (2008) 012301 [arXiv:0706.4307] [INSPIRE].
P. M. Chesler and L. G. Yaffe, The stress-energy tensor of a quark moving through a strongly-coupled N = 4 supersymmetric Yang-Mills plasma: comparing hydrodynamics and AdS/CFT, Phys. Rev. D 78 (2008) 045013 [arXiv:0712.0050] [INSPIRE].
S. S. Gubser, D. R. Gulotta, S. S. Pufu and F. D. Rocha, Gluon energy loss in the gauge-string duality, JHEP 10 (2008) 052 [arXiv:0803.1470] [INSPIRE].
Y. Hatta, E. Iancu and A. H. Mueller, Jet evolution in the N = 4 SYM plasma at strong coupling, JHEP 05 (2008) 037 [arXiv:0803.2481] [INSPIRE].
F. Dominguez, C. Marquet, A. H. Mueller, B. Wu and B.-W. Xiao, Comparing energy loss and pT-broadening in perturbative QCD with strong coupling N = 4 SYM theory, Nucl. Phys. A 811 (2008) 197 [arXiv:0803.3234] [INSPIRE].
P. M. Chesler, K. Jensen and A. Karch, Jets in strongly-coupled N = 4 super Yang-Mills theory, Phys. Rev. D 79 (2009) 025021 [arXiv:0804.3110] [INSPIRE].
P. M. Chesler, K. Jensen, A. Karch and L. G. Yaffe, Light quark energy loss in strongly-coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. D 79 (2009) 125015 [arXiv:0810.1985] [INSPIRE].
S. S. Gubser, S. S. Pufu, F. D. Rocha and A. Yarom, Energy loss in a strongly coupled thermal medium and the gauge-string duality, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., World Scientific, Singapore (2010) [arXiv:0902.4041] [INSPIRE].
F. D’Eramo, H. Liu and K. Rajagopal, Transverse momentum broadening and the jet quenching parameter, redux, Phys. Rev. D 84 (2011) 065015 [arXiv:1006.1367] [INSPIRE].
P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories revisited: 3-point correlators with gauge-gravity duality, JHEP 10 (2010) 099 [arXiv:1008.4023] [INSPIRE].
P. Arnold and D. Vaman, Jet quenching in hot strongly coupled gauge theories simplified, JHEP 04 (2011) 027 [arXiv:1101.2689] [INSPIRE].
P. M. Chesler, Y.-Y. Ho and K. Rajagopal, Shining a gluon beam through quark-gluon plasma, Phys. Rev. D 85 (2012) 126006 [arXiv:1111.1691] [INSPIRE].
J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U. A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge, U.K. (2014) [arXiv:1101.0618] [INSPIRE].
P. Arnold, P. Szepietowski and D. Vaman, Coupling dependence of jet quenching in hot strongly-coupled gauge theories, JHEP 07 (2012) 024 [arXiv:1203.6658] [INSPIRE].
P. M. Chesler, M. Lekaveckas and K. Rajagopal, Heavy quark energy loss far from equilibrium in a strongly coupled collision, JHEP 10 (2013) 013 [arXiv:1306.0564] [INSPIRE].
O. DeWolfe, S. S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].
A. Ficnar, S. S. Gubser and M. Gyulassy, Shooting string holography of jet quenching at RHIC and LHC, Phys. Lett. B 738 (2014) 464 [arXiv:1311.6160] [INSPIRE].
P. M. Chesler and K. Rajagopal, Jet quenching in strongly coupled plasma, Phys. Rev. D 90 (2014) 025033 [arXiv:1402.6756] [INSPIRE].
P. M. Chesler and W. van der Schee, Early thermalization, hydrodynamics and energy loss in AdS/CFT, Int. J. Mod. Phys. E 24 (2015) 1530011 [arXiv:1501.04952] [INSPIRE].
P. M. Chesler and K. Rajagopal, On the evolution of jet energy and opening angle in strongly coupled plasma, JHEP 05 (2016) 098 [arXiv:1511.07567] [INSPIRE].
J. Casalderrey-Solana and A. Ficnar, Holographic three-jet events in strongly coupled N = 4 Yang-Mills plasma, arXiv:1512.00371 [INSPIRE].
K. Rajagopal, A. V. Sadofyev and W. van der Schee, Evolution of the jet opening angle distribution in holographic plasma, Phys. Rev. Lett. 116 (2016) 211603 [arXiv:1602.04187] [INSPIRE].
J. Brewer, K. Rajagopal, A. Sadofyev and W. Van Der Schee, Evolution of the mean jet shape and dijet asymmetry distribution of an ensemble of holographic jets in strongly coupled plasma, JHEP 02 (2018) 015 [arXiv:1710.03237] [INSPIRE].
CMS collaboration, Modification of jet shapes in PbPb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 730 (2014) 243 [arXiv:1310.0878] [INSPIRE].
CMS collaboration, Measurement of jet fragmentation in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 90 (2014) 024908 [arXiv:1406.0932] [INSPIRE].
CMS collaboration, Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, JHEP 01 (2016) 006 [arXiv:1509.09029] [INSPIRE].
H. Song and U. W. Heinz, Causal viscous hydrodynamics in 2 + 1 dimensions for relativistic heavy-ion collisions, Phys. Rev. C 77 (2008) 064901 [arXiv:0712.3715] [INSPIRE].
C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].
J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].
S. Jeon and U. Heinz, Introduction to hydrodynamics, Int. J. Mod. Phys. E 24 (2015) 1530010 [arXiv:1503.03931] [INSPIRE].
P. Romatschke and U. Romatschke, Relativistic fluid dynamics in and out of equilibrium, Cambridge University Press, Cambridge, U.K. (2019) [arXiv:1712.05815] [INSPIRE].
P. M. Chesler and L. G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].
M. P. Heller, R. A. Janik and P. Witaszczyk, The characteristics of thermalization of boost-invariant plasma from holography, Phys. Rev. Lett. 108 (2012) 201602 [arXiv:1103.3452] [INSPIRE].
A. Kurkela and Y. Zhu, Isotropization and hydrodynamization in weakly coupled heavy-ion collisions, Phys. Rev. Lett. 115 (2015) 182301 [arXiv:1506.06647] [INSPIRE].
P. M. Chesler, Colliding shock waves and hydrodynamics in small systems, Phys. Rev. Lett. 115 (2015) 241602 [arXiv:1506.02209] [INSPIRE].
P. M. Chesler, How big are the smallest drops of quark-gluon plasma?, JHEP 03 (2016) 146 [arXiv:1601.01583] [INSPIRE].
W. Busza, K. Rajagopal and W. van der Schee, Heavy ion collisions: the big picture, and the big questions, Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 [arXiv:1802.04801] [INSPIRE].
W. Florkowski, M. P. Heller and M. Spalinski, New theories of relativistic hydrodynamics in the LHC era, Rept. Prog. Phys. 81 (2018) 046001 [arXiv:1707.02282] [INSPIRE].
M. P. Heller and M. Spalinski, Hydrodynamics beyond the gradient expansion: resurgence and resummation, Phys. Rev. Lett. 115 (2015) 072501 [arXiv:1503.07514] [INSPIRE].
M. Strickland, J. Noronha and G. Denicol, Anisotropic nonequilibrium hydrodynamic attractor, Phys. Rev. D 97 (2018) 036020 [arXiv:1709.06644] [INSPIRE].
J.-P. Blaizot and L. Yan, Emergence of hydrodynamical behavior in expanding ultra-relativistic plasmas, Annals Phys. 412 (2020) 167993 [arXiv:1904.08677] [INSPIRE].
S. Jaiswal, C. Chattopadhyay, A. Jaiswal, S. Pal and U. Heinz, Exact solutions and attractors of higher-order viscous fluid dynamics for Bjorken flow, Phys. Rev. C 100 (2019) 034901 [arXiv:1907.07965] [INSPIRE].
A. Kurkela, W. van der Schee, U. A. Wiedemann and B. Wu, Early- and late-time behavior of attractors in heavy-ion collisions, Phys. Rev. Lett. 124 (2020) 102301 [arXiv:1907.08101] [INSPIRE].
J. Brewer, L. Yan and Y. Yin, Adiabatic hydrodynamization in rapidly-expanding quark-gluon plasma, Phys. Lett. B 816 (2021) 136189 [arXiv:1910.00021] [INSPIRE].
HotQCD collaboration, Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].
D. Pablos, Jet suppression from a small to intermediate to large radius, Phys. Rev. Lett. 124 (2020) 052301 [arXiv:1907.12301] [INSPIRE].
R. Baier, P. Romatschke and U. A. Wiedemann, Dissipative hydrodynamics and heavy ion collisions, Phys. Rev. C 73 (2006) 064903 [hep-ph/0602249] [INSPIRE].
W. M. Serenone et al., Λ polarization from thermalized jet energy, arXiv:2102.11919 [INSPIRE].
F. Cooper and G. Frye, Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production, Phys. Rev. D 10 (1974) 186 [INSPIRE].
Y. Tachibana, N.-B. Chang and G.-Y. Qin, Full jet in quark-gluon plasma with hydrodynamic medium response, Phys. Rev. C 95 (2017) 044909 [arXiv:1701.07951] [INSPIRE].
R. Kunnawalkam Elayavalli and K. C. Zapp, Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions, JHEP 07 (2017) 141 [arXiv:1707.01539] [INSPIRE].
G. Milhano, U. A. Wiedemann and K. C. Zapp, Sensitivity of jet substructure to jet-induced medium response, Phys. Lett. B 779 (2018) 409 [arXiv:1707.04142] [INSPIRE].
C. Park, S. Jeon and C. Gale, Jet modification with medium recoil in quark-gluon plasma, Nucl. Phys. A 982 (2019) 643 [arXiv:1807.06550] [INSPIRE].
JETSCAPE collaboration, Jet substructure modifications in a QGP from multi-scale description of jet evolution with JETSCAPE, PoS(HardProbes2018)099 (2018) [arXiv:1812.06366] [INSPIRE].
N.-B. Chang, Y. Tachibana and G.-Y. Qin, Nuclear modification of jet shape for inclusive jets and γ-jets at the LHC energies, Phys. Lett. B 801 (2020) 135181 [arXiv:1906.09562] [INSPIRE].
W. Chen, S. Cao, T. Luo, L.-G. Pang and X.-N. Wang, Medium modification of γ-jet fragmentation functions in Pb+Pb collisions at LHC, Phys. Lett. B 810 (2020) 135783 [arXiv:2005.09678] [INSPIRE].
J. Brewer, Q. Brodsky and K. Rajagopal, Disentangling jet modification, in 10th international conference on hard and electromagnetic probes of high-energy nuclear collisions: hard probes 2020, (2020) [arXiv:2009.03316] [INSPIRE].
D. Pablos, Jet suppression from small to large radius, in 10th international conference on hard and electromagnetic probes of high-energy nuclear collisions: hard probes 2020, (2020) [arXiv:2009.02202] [INSPIRE].
S. Floerchinger and U. A. Wiedemann, Mode-by-mode fluid dynamics for relativistic heavy ion collisions, Phys. Lett. B 728 (2014) 407 [arXiv:1307.3453] [INSPIRE].
S. Floerchinger and U. A. Wiedemann, Kinetic freeze-out, particle spectra and harmonic flow coefficients from mode-by-mode hydrodynamics, Phys. Rev. C 89 (2014) 034914 [arXiv:1311.7613] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.01140
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Casalderrey-Solana, J., Milhano, J.G., Pablos, D. et al. Jet wake from linearized hydrodynamics. J. High Energ. Phys. 2021, 230 (2021). https://doi.org/10.1007/JHEP05(2021)230
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)230
Keywords
- Heavy Ion Phenomenology
- Jets