Abstract
We construct infinite new classes of AdS4 × S1 × S5 solutions of type IIB string theory which have non-trivial SL(2, ℤ) monodromy along the S1 direction. The solutions are supersymmetric and holographically dual, generically, to \( \mathcal{N} \) = 1 SCFTs in d = 3. The solutions are first constructed as AdS4 × ℝ solutions in D = 5 SO(6) gauged supergravity and then uplifted to D = 10. Unlike the known AdS4 × ℝ S-fold solutions, there is no continuous symmetry associated with the ℝ direction. The solutions all arise as limiting cases of Janus solutions of d = 4, \( \mathcal{N} \) = 4 SYM theory which are supported both by a different value of the coupling constant on either side of the interface, as well as by fermion and boson mass deformations. As special cases, the construction recovers three known S-fold constructions, preserving \( \mathcal{N} \) = 1, 2 and 4 supersymmetry, as well as a recently constructed \( \mathcal{N} \) = 1 AdS4 × S1 × S5 solution (not S-folded). We also present some novel “one-sided Janus” solutions that are non-singular.
References
C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS3/CFT2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].
C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS3/CFT2 (2, 0), JHEP 06 (2018) 008 [arXiv:1712.07631] [INSPIRE].
G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].
B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].
D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].
D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].
A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12 (2019) 113 [arXiv:1907.04177] [INSPIRE].
A. Guarino, C. Sterckx and M. Trigiante, \( \mathcal{N} \) = 2 supersymmetric S-folds, JHEP 04 (2020) 050 [arXiv:2002.03692] [INSPIRE].
N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in \( \mathcal{N} \) = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].
A. Clark and A. Karch, Super Janus, JHEP 10 (2005) 094 [hep-th/0506265] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].
M. Suh, Supersymmetric Janus solutions in five and ten dimensions, JHEP 09 (2011) 064 [arXiv:1107.2796] [INSPIRE].
N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. Van Muiden, Janus and J-fold Solutions from Sasaki-Einstein Manifolds, Phys. Rev. D 100 (2019) 081901 [arXiv:1907.11132] [INSPIRE].
I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, Spatially modulated and supersymmetric mass deformations of \( \mathcal{N} \) = 4 SYM, JHEP 11 (2020) 156 [arXiv:2007.15095] [INSPIRE].
N. Bobev, H. Elvang, U. Kol, T. Olson and S. S. Pufu, Holography for \( \mathcal{N} \) = 1∗ on S4, JHEP 10 (2016) 095 [arXiv:1605.00656] [INSPIRE].
K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].
A. Baguet, O. Hohm and H. Samtleben, Consistent Type IIB Reductions to Maximal 5D Supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].
E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].
O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].
B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].
B. Assel, C. Bachas, J. Estes and J. Gomis, IIB Duals of D = 3 N = 4 Circular Quivers, JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].
N. Bobev, T. Fischbacher, F. F. Gautason and K. Pilch, A cornucopia of AdS5 vacua, JHEP 07 (2020) 240 [arXiv:2003.03979] [INSPIRE].
I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, Superconformal RG interfaces in holography, JHEP 11 (2020) 168 [arXiv:2007.07891] [INSPIRE].
O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p, q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].
O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q] 7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835 [hep-th/9812209] [INSPIRE].
A. Dabholkar and C. Hull, Duality twists, orbifolds, and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].
M. Gutperle and J. Samani, Holographic RG-flows and Boundary CFTs, Phys. Rev. D 86 (2012) 106007 [arXiv:1207.7325] [INSPIRE].
N. Bobev, K. Pilch and N. P. Warner, Supersymmetric Janus Solutions in Four Dimensions, JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].
T. Robb and J. G. Taylor, AdS × S1 × M5 compact solutions for N = 2 d = 10 chiral supergravity, Phys. Lett. B 155 (1985) 59 [INSPIRE].
F. Quevedo, Compactification of Chiral N = 2 D = 10 Supergravity, Phys. Lett. B 173 (1986) 145 [INSPIRE].
D. Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].
G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].
S. Jain, N. Kundu, K. Sen, A. Sinha and S. P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].
C. M. Hull and P. K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].
M. Günaydin, L. J. Romans and N. P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].
N. Bobev, F. F. Gautason, B. E. Niehoff and J. van Muiden, Uplifting GPPZ: a ten-dimensional dual of \( \mathcal{N} \) = 1∗, JHEP 10 (2018) 058 [arXiv:1805.03623] [INSPIRE].
W. Ziller, On the geometry of cohomogeneity one manifolds with positive curvature, arXiv:0707.3345.
M. V. Raamsdonk and C. Waddell, Holographic and localization calculations of boundary F for \( \mathcal{N} \) = 4 SUSY Yang-Mills theory, JHEP 02 (2021) 222 [arXiv:2010.14520] [INSPIRE].
A. Khavaev and N. P. Warner, A Class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2101.07264
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Arav, I., Cheung, K.C.M., Gauntlett, J.P. et al. A new family of AdS4 S-folds in type IIB string theory. J. High Energ. Phys. 2021, 222 (2021). https://doi.org/10.1007/JHEP05(2021)222
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)222
Keywords
- AdS-CFT Correspondence
- Conformal Field Theory