Skip to main content

A new family of AdS4 S-folds in type IIB string theory

A preprint version of the article is available at arXiv.

Abstract

We construct infinite new classes of AdS4 × S1 × S5 solutions of type IIB string theory which have non-trivial SL(2, ℤ) monodromy along the S1 direction. The solutions are supersymmetric and holographically dual, generically, to \( \mathcal{N} \) = 1 SCFTs in d = 3. The solutions are first constructed as AdS4 × ℝ solutions in D = 5 SO(6) gauged supergravity and then uplifted to D = 10. Unlike the known AdS4 × ℝ S-fold solutions, there is no continuous symmetry associated with the ℝ direction. The solutions all arise as limiting cases of Janus solutions of d = 4, \( \mathcal{N} \) = 4 SYM theory which are supported both by a different value of the coupling constant on either side of the interface, as well as by fermion and boson mass deformations. As special cases, the construction recovers three known S-fold constructions, preserving \( \mathcal{N} \) = 1, 2 and 4 supersymmetry, as well as a recently constructed \( \mathcal{N} \) = 1 AdS4 × S1 × S5 solution (not S-folded). We also present some novel “one-sided Janus” solutions that are non-singular.

References

  1. [1]

    C. Couzens, C. Lawrie, D. Martelli, S. Schäfer-Nameki and J.-M. Wong, F-theory and AdS3/CFT2, JHEP 08 (2017) 043 [arXiv:1705.04679] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    C. Couzens, D. Martelli and S. Schäfer-Nameki, F-theory and AdS3/CFT2 (2, 0), JHEP 06 (2018) 008 [arXiv:1712.07631] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    G. Inverso, H. Samtleben and M. Trigiante, Type II supergravity origin of dyonic gaugings, Phys. Rev. D 95 (2017) 066020 [arXiv:1612.05123] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    B. Assel and A. Tomasiello, Holographic duals of 3d S-fold CFTs, JHEP 06 (2018) 019 [arXiv:1804.06419] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    E. D’Hoker, J. Estes and M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus, Nucl. Phys. B 753 (2006) 16 [hep-th/0603013] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    D. Gaiotto and E. Witten, Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys. 135 (2009) 789 [arXiv:0804.2902] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    D. Gaiotto and E. Witten, Janus Configurations, Chern-Simons Couplings, And The theta-Angle in N = 4 Super Yang-Mills Theory, JHEP 06 (2010) 097 [arXiv:0804.2907] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. Guarino and C. Sterckx, S-folds and (non-)supersymmetric Janus solutions, JHEP 12 (2019) 113 [arXiv:1907.04177] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    A. Guarino, C. Sterckx and M. Trigiante, \( \mathcal{N} \) = 2 supersymmetric S-folds, JHEP 04 (2020) 050 [arXiv:2002.03692] [INSPIRE].

  10. [10]

    N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. van Muiden, Holographic interfaces in \( \mathcal{N} \) = 4 SYM: Janus and J-folds, JHEP 05 (2020) 134 [arXiv:2003.09154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    A. Clark and A. Karch, Super Janus, JHEP 10 (2005) 094 [hep-th/0506265] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    E. D’Hoker, J. Estes and M. Gutperle, Ten-dimensional supersymmetric Janus solutions, Nucl. Phys. B 757 (2006) 79 [hep-th/0603012] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. [13]

    M. Suh, Supersymmetric Janus solutions in five and ten dimensions, JHEP 09 (2011) 064 [arXiv:1107.2796] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    N. Bobev, F. F. Gautason, K. Pilch, M. Suh and J. Van Muiden, Janus and J-fold Solutions from Sasaki-Einstein Manifolds, Phys. Rev. D 100 (2019) 081901 [arXiv:1907.11132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. [15]

    I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, Spatially modulated and supersymmetric mass deformations of \( \mathcal{N} \) = 4 SYM, JHEP 11 (2020) 156 [arXiv:2007.15095] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    N. Bobev, H. Elvang, U. Kol, T. Olson and S. S. Pufu, Holography for \( \mathcal{N} \) = 1 on S4, JHEP 10 (2016) 095 [arXiv:1605.00656] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and consistent truncations, Fortsch. Phys. 65 (2017) 1700048 [arXiv:1401.3360] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    A. Baguet, O. Hohm and H. Samtleben, Consistent Type IIB Reductions to Maximal 5D Supergravity, Phys. Rev. D 92 (2015) 065004 [arXiv:1506.01385] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus, JHEP 06 (2007) 021 [arXiv:0705.0022] [INSPIRE].

  20. [20]

    E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus, JHEP 06 (2007) 022 [arXiv:0705.0024] [INSPIRE].

  21. [21]

    O. Aharony, L. Berdichevsky, M. Berkooz and I. Shamir, Near-horizon solutions for D3-branes ending on 5-branes, Phys. Rev. D 84 (2011) 126003 [arXiv:1106.1870] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4 Superconformal Field Theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    B. Assel, C. Bachas, J. Estes and J. Gomis, IIB Duals of D = 3 N = 4 Circular Quivers, JHEP 12 (2012) 044 [arXiv:1210.2590] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    N. Bobev, T. Fischbacher, F. F. Gautason and K. Pilch, A cornucopia of AdS5 vacua, JHEP 07 (2020) 240 [arXiv:2003.03979] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    I. Arav, K. C. M. Cheung, J. P. Gauntlett, M. M. Roberts and C. Rosen, Superconformal RG interfaces in holography, JHEP 11 (2020) 168 [arXiv:2007.07891] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering the symmetries on [p, q] seven-branes: Beyond the Kodaira classification, Adv. Theor. Math. Phys. 3 (1999) 1785 [hep-th/9812028] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  27. [27]

    O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, Uncovering infinite symmetries on [p, q] 7-branes: Kac-Moody algebras and beyond, Adv. Theor. Math. Phys. 3 (1999) 1835 [hep-th/9812209] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  28. [28]

    A. Dabholkar and C. Hull, Duality twists, orbifolds, and fluxes, JHEP 09 (2003) 054 [hep-th/0210209] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    M. Gutperle and J. Samani, Holographic RG-flows and Boundary CFTs, Phys. Rev. D 86 (2012) 106007 [arXiv:1207.7325] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    N. Bobev, K. Pilch and N. P. Warner, Supersymmetric Janus Solutions in Four Dimensions, JHEP 06 (2014) 058 [arXiv:1311.4883] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    T. Robb and J. G. Taylor, AdS × S1 × M5 compact solutions for N = 2 d = 10 chiral supergravity, Phys. Lett. B 155 (1985) 59 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    F. Quevedo, Compactification of Chiral N = 2 D = 10 Supergravity, Phys. Lett. B 173 (1986) 145 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    D. Z. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. [34]

    G. Dall’Agata and G. Inverso, On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions, Nucl. Phys. B 859 (2012) 70 [arXiv:1112.3345] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    S. Jain, N. Kundu, K. Sen, A. Sinha and S. P. Trivedi, A Strongly Coupled Anisotropic Fluid From Dilaton Driven Holography, JHEP 01 (2015) 005 [arXiv:1406.4874] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    C. M. Hull and P. K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. [37]

    M. Günaydin, L. J. Romans and N. P. Warner, Gauged N = 8 Supergravity in Five-Dimensions, Phys. Lett. B 154 (1985) 268 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    N. Bobev, F. F. Gautason, B. E. Niehoff and J. van Muiden, Uplifting GPPZ: a ten-dimensional dual of \( \mathcal{N} \) = 1, JHEP 10 (2018) 058 [arXiv:1805.03623] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    W. Ziller, On the geometry of cohomogeneity one manifolds with positive curvature, arXiv:0707.3345.

  40. [40]

    M. V. Raamsdonk and C. Waddell, Holographic and localization calculations of boundary F for \( \mathcal{N} \) = 4 SUSY Yang-Mills theory, JHEP 02 (2021) 222 [arXiv:2010.14520] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    A. Khavaev and N. P. Warner, A Class of N = 1 supersymmetric RG flows from five-dimensional N = 8 supergravity, Phys. Lett. B 495 (2000) 215 [hep-th/0009159] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jerome P. Gauntlett.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.07264

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arav, I., Cheung, K.C.M., Gauntlett, J.P. et al. A new family of AdS4 S-folds in type IIB string theory. J. High Energ. Phys. 2021, 222 (2021). https://doi.org/10.1007/JHEP05(2021)222

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2021)222

Keywords

  • AdS-CFT Correspondence
  • Conformal Field Theory