Skip to main content

U(1) symmetry resolved entanglement in free 1+1 dimensional field theories via form factor bootstrap

A preprint version of the article is available at arXiv.

Abstract

We generalise the form factor bootstrap approach to integrable field theories with U(1) symmetry to derive matrix elements of composite branch-point twist fields associated with symmetry resolved entanglement entropies. The bootstrap equations are solved for the free massive Dirac and complex boson theories, which are the simplest theories with U(1) symmetry. We present the exact and complete solution for the bootstrap, including vacuum expectation values and form factors involving any type and arbitrarily number of particles. The non-trivial solutions are carefully cross-checked by performing various limits and by the application of the ∆-theorem. An alternative and compact determination of the novel form factors is also presented. Based on the form factors of the U(1) composite branch-point twist fields, we re-derive earlier results showing entanglement equipartition for an interval in the ground state of the two models.

References

  1. L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].

  2. P. Calabrese, J. Cardy and B. Doyon, Entanglement entropy in extended quantum systems, J. Phys. A 42 (2009) 500301.

    MathSciNet  MATH  Article  Google Scholar 

  3. J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

  4. D.J.E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. P. Calabrese and A. Lefevre, Entanglement spectrum in one-dimensional systems, Phys. Rev. A 78 (2008) 032329.

    ADS  Article  Google Scholar 

  6. V. Alba, P. Calabrese and E. Tonni, Entanglement spectrum degeneracy and the Cardy formula in 1+1 dimensional conformal field theories, J. Phys. A 51 (2018) 024001 [arXiv:1707.07532] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. N. Laflorencie and S. Rachel, Spin-resolved entanglement spectroscopy of critical spin chains and Luttinger liquids, J. Stat. Mech. (2014) P11013.

  8. M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett. 120 (2018) 200602 [arXiv:1711.09418] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. A. Lukin et al., Probing entanglement in a many-body localized system, Science 364 (2019) 6437.

    Google Scholar 

  10. E. Cornfeld, M. Goldstein and E. Sela, Imbalance entanglement: Symmetry decomposition of negativity, Phys. Rev. A 98 (2018) 032302 [arXiv:1804.00632] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. (2004) P06002.

  13. P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005.

    MathSciNet  MATH  Article  Google Scholar 

  14. J.C. Xavier, F.C. Alcaraz and G. Sierra, Equipartition of the entanglement entropy, Phys. Rev. B 98 (2018) 041106 [arXiv:1804.06357] [INSPIRE].

    ADS  Article  Google Scholar 

  15. N. Feldman and M. Goldstein, Dynamics of Charge-Resolved Entanglement after a Local Quench, Phys. Rev. B 100 (2019) 235146 [arXiv:1905.10749] [INSPIRE].

    ADS  Article  Google Scholar 

  16. R. Bonsignori and P. Calabrese, Boundary effects on symmetry resolved entanglement, J. Phys. A 54 (2021) 015005 [arXiv:2009.08508] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a CFT, J. Stat. Mech. (2020) 073101.

  18. B. Estienne, Y. Ikhlef and A. Morin-Duchesne, Finite-size corrections in critical symmetry-resolved entanglement, SciPost Phys. 10 (2021) 054 [arXiv:2010.10515] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. S. Murciano, R. Bonsignori and P. Calabrese, Symmetry decomposition of negativity of massless free fermions, arXiv:2102.10054 [INSPIRE].

  20. S. Murciano, G. Di Giulio and P. Calabrese, Entanglement and symmetry resolution in two dimensional free quantum field theories, JHEP 08 (2020) 073 [arXiv:2006.09069] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  21. D.X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field theories via form factor bootstrap, JHEP 11 (2020) 131 [arXiv:2008.08553] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  22. S. Zhao, C. Northe and R. Meyer, Symmetry-Resolved Entanglement in AdS3/CFT2 coupled to U(1) Chern-Simons Theory, arXiv:2012.11274 [INSPIRE].

  23. R. Bonsignori, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in free fermionic systems, J. Phys. A 52 (2019) 475302 [arXiv:1907.02084] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: Exact results in 1d and beyond, J. Stat. Mech. (2020) 033106.

  25. H. Barghathi, C.M. Herdman and A. Del Maestro, Rényi Generalization of the Accessible Entanglement Entropy, Phys. Rev. Lett. 121 (2018) 150501.

    ADS  MathSciNet  Article  Google Scholar 

  26. H. Barghathi, E. Casiano-Diaz and A. Del Maestro, Operationally accessible entanglement of one-dimensional spinless fermions, Phys. Rev. A 100 (2019) 022324 [arXiv:1905.03312] [INSPIRE].

    ADS  Article  Google Scholar 

  27. S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped integrable systems: a corner transfer matrix approach, SciPost Phys. 8 (2020) 046 [arXiv:1911.09588] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. P. Calabrese, M. Collura, G. Di Giulio and S. Murciano, Full counting statistics in the gapped XXZ spin chain, Europhys. Lett. 129 (2020) 60007.

    ADS  Article  Google Scholar 

  29. G. Parez, R. Bonsignori and P. Calabrese, Quasiparticle dynamics of symmetry-resolved entanglement after a quench: Examples of conformal field theories and free fermions, Phys. Rev. B 103 (2021) L041104 [arXiv:2010.09794] [INSPIRE].

    ADS  Article  Google Scholar 

  30. M.T. Tan and S. Ryu, Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization, Phys. Rev. B 101 (2020) 235169 [arXiv:1911.01451] [INSPIRE].

    ADS  Article  Google Scholar 

  31. S. Murciano, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in two-dimensional systems via dimensional reduction, J. Stat. Mech. (2020) 083102.

  32. X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipartition in critical random spin chains, Phys. Rev. B 102 (2020) 014455 [arXiv:2005.03331] [INSPIRE].

    ADS  Article  Google Scholar 

  33. M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Evidence for Unbounded Growth of the Number Entropy in Many-Body Localized Phases, Phys. Rev. Lett. 124 (2020) 243601 [arXiv:2003.04849] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Unlimited growth of particle fluctuations in many-body localized phases, arXiv:2012.12436 [INSPIRE].

  35. K. Monkman and J. Sirker, Operational Entanglement of Symmetry-Protected Topological Edge States, Phys. Rev. Res. 2 (2020) 043191.

    Article  Google Scholar 

  36. E. Cornfeld, L.A. Landau, K. Shtengel and E. Sela, Entanglement spectroscopy of non-Abelian anyons: Reading off quantum dimensions of individual anyons, Phys. Rev. B 99 (2019) 115429 [arXiv:1810.01853] [INSPIRE].

    ADS  Article  Google Scholar 

  37. V. Vitale et al., Symmetry-resolved dynamical purification in synthetic quantum matter, arXiv:2101.07814 [INSPIRE].

  38. A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers and T. Sierens, Holographic Charged Rényi Entropies, JHEP 12 (2013) 059 [arXiv:1310.4180] [INSPIRE].

    ADS  Article  Google Scholar 

  39. P. Caputa, G. Mandal and R. Sinha, Dynamical entanglement entropy with angular momentum and U(1) charge, JHEP 11 (2013) 052 [arXiv:1306.4974] [INSPIRE].

    ADS  Article  Google Scholar 

  40. P. Caputa, M. Nozaki and T. Numasawa, Charged Entanglement Entropy of Local Operators, Phys. Rev. D 93 (2016) 105032 [arXiv:1512.08132] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. J.S. Dowker, Conformal weights of charged Rényi entropy twist operators for free scalar fields in arbitrary dimensions, J. Phys. A 49 (2016) 145401 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  42. J.S. Dowker, Charged Rényi entropies for free scalar fields, J. Phys. A 50 (2017) 165401 [arXiv:1512.01135] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  43. H. Shapourian, K. Shiozaki and S. Ryu, Partial time-reversal transformation and entanglement negativity in fermionic systems, Phys. Rev. B 95 (2017) 165101 [arXiv:1611.07536] [INSPIRE].

    ADS  Article  Google Scholar 

  44. H. Shapourian, P. Ruggiero, S. Ryu and P. Calabrese, Twisted and untwisted negativity spectrum of free fermions, SciPost Phys. 7 (2019) 037 [arXiv:1906.04211] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. (2005) P07007.

  46. J.L. Cardy, O.A. Castro-Alvaredo and B. Doyon, Form factors of branch-point twist fields in quantum integrable models and entanglement entropy, J. Statist. Phys. 130 (2008) 129 [arXiv:0706.3384] [INSPIRE].

  47. V.G. Knizhnik, Analytic Fields on Riemann Surfaces. 2, Commun. Math. Phys. 112 (1987) 567 [INSPIRE].

  48. L.J. Dixon, D. Friedan, E.J. Martinec and S.H. Shenker, The Conformal Field Theory of Orbifolds, Nucl. Phys. B 282 (1987) 13 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. S. Furukawa, V. Pasquier and J. Shiraishi, Mutual Information and Compactification Radius in a c=1 Critical Phase in One Dimension, Phys. Rev. Lett. 102 (2009) 170602 [arXiv:0809.5113] [INSPIRE].

    ADS  Article  Google Scholar 

  50. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech. (2009) P11001.

  51. M. Headrick, Entanglement Rényi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].

    ADS  Article  Google Scholar 

  52. P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in conformal field theory II, J. Stat. Mech. (2011) P01021.

  53. V. Alba, L. Tagliacozzo and P. Calabrese, Entanglement entropy of two disjoint intervals in c=1 theories, J. Stat. Mech. (2011) P06012.

  54. M.A. Rajabpour and F. Gliozzi, Entanglement entropy of two disjoint intervals from fusion algebra of twist fields, J. Stat. Mech. (2012) P02016.

  55. P. Ruggiero, E. Tonni and P. Calabrese, Entanglement entropy of two disjoint intervals and the recursion formula for conformal blocks, J. Stat. Mech. 113101 (2018).

  56. T. Dupic, B. Estienne and Y. Ikhlef, Entanglement entropies of minimal models from null-vectors, SciPost Phys. 4 (2018) 031 [arXiv:1709.09270] [INSPIRE].

    ADS  Article  Google Scholar 

  57. A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal field theory, J. Stat. Mech. (2014) P01008.

  58. O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in integrable models with backscattering, J. Phys. A 41 (2008) 275203 [arXiv:0802.4231] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  59. O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive 1+1-dimensional quantum field theories, J. Phys. A 42 (2009) 504006 [arXiv:0906.2946] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  60. O.A. Castro-Alvaredo and B. Doyon, Bi-partite entanglement entropy in massive QFT with a boundary: The Ising model, J. Statist. Phys. 134 (2009) 105 [arXiv:0810.0219] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  61. O.A. Castro-Alvaredo and E. Levi, Higher particle form factors of branch point twist fields in integrable quantum field theories, J. Phys. A 44 (2011) 255401 [arXiv:1103.2069] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. O.A. Castro-Alvaredo, B. Doyon and E. Levi, Arguments towards a c-theorem from branch-point twist fields, J. Phys. A 44 (2011) 492003 [arXiv:1107.4280] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  63. E. Levi, Composite branch-point twist fields in the Ising model and their expectation values, J. Phys. A 45 (2012) 275401 [arXiv:1204.1192] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  64. E. Levi, O.A. Castro-Alvaredo and B. Doyon, Universal corrections to the entanglement entropy in gapped quantum spin chains: a numerical study, Phys. Rev. B 88 (2013) 094439 [arXiv:1304.6874] [INSPIRE].

    ADS  Article  Google Scholar 

  65. A.M. Green and B.J. Kavanagh, Primordial Black Holes as a dark matter candidate, J. Phys. G 48 (2021) 4 [arXiv:2007.10722] [INSPIRE].

    Article  Google Scholar 

  66. D. Bianchini, O.A. Castro-Alvaredo and B. Doyon, Entanglement Entropy of Non-Unitary Integrable Quantum Field Theory, Nucl. Phys. B 896 (2015) 835 [arXiv:1502.03275] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  67. O. Blondeau-Fournier, O.A. Castro-Alvaredo and B. Doyon, Universal scaling of the logarithmic negativity in massive quantum field theory, J. Phys. A 49 (2016) 125401 [arXiv:1508.04026] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  68. D. Bianchini and O.A. Castro-Alvaredo, Branch Point Twist Field Correlators in the Massive Free Boson Theory, Nucl. Phys. B 913 (2016) 879 [arXiv:1607.05656] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  69. O.A. Castro-Alvaredo, Massive Corrections to Entanglement in Minimal E8 Toda Field Theory, SciPost Phys. 2 (2017) 008.

    ADS  Article  Google Scholar 

  70. O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of Quasiparticle Excitations, Phys. Rev. Lett. 121 (2018) 170602 [arXiv:1805.04948] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  71. O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of Quantum Particle Excitations I. Free Field Theory, JHEP 10 (2018) 039 [arXiv:1806.03247] [INSPIRE].

  72. O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of Quantum Particle Excitations II. Disconnected Regions and Logarithmic Negativity, JHEP 11 (2019) 058 [arXiv:1904.01035] [INSPIRE].

  73. O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement Content of Quantum Particle Excitations III. Graph Partition Functions, J. Math. Phys. 60 (2019) 082301 [arXiv:1904.02615] [INSPIRE].

  74. O.A. Castro-Alvaredo, M. Lencsés, I.M. Szécsényi and J. Viti, Entanglement Dynamics after a Quench in Ising Field Theory: A Branch Point Twist Field Approach, JHEP 12 (2019) 079 [arXiv:1907.11735] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  75. O.A. Castro-Alvaredo, M. Lencsés, I.M. Szécsényi and J. Viti, Entanglement Oscillations near a Quantum Critical Point, Phys. Rev. Lett. 124 (2020) 230601 [arXiv:2001.10007] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. G. Delfino, P. Simonetti and J.L. Cardy, Asymptotic factorization of form-factors in two-dimensional quantum field theory, Phys. Lett. B 387 (1996) 327 [hep-th/9607046] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  77. B. Berg, M. Karowski and P. Weisz, Construction of Green Functions from an Exact S Matrix, Phys. Rev. D 19 (1979) 2477 [INSPIRE].

    ADS  Article  Google Scholar 

  78. A.N. Kirillov and F.A. Smirnov, A Representation of the Current Algebra Connected With the SU(2) Invariant Thirring Model, Phys. Lett. B 198 (1987) 506 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  79. F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World Scientific, Singapore, (1992), [DOI].

  80. C. Efthimiou and A. LeClair, Particle-field duality and form-factors from vertex operators, Commun. Math. Phys. 171 (1995) 531 [hep-th/9312121] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  81. M. Karowski and P. Weisz, Exact Form-Factors in (1+1)-Dimensional Field Theoretic Models with Soliton Behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].

    ADS  Article  Google Scholar 

  82. E.C. Marino, B. Schroer and J.A. Swieca, Euclidean Functional Integral Approach for Disorder Variables and Kinks, Nucl. Phys. B 200 (1982) 473 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  83. O. Blondeau-Fournier and B. Doyon, Expectation values of twist fields and universal entanglement saturation of the free massive boson, J. Phys. A 50 (2017) 274001 [arXiv:1612.04238] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  84. H. Casini and M. Huerta, Entanglement and alpha entropies for a massive scalar field in two dimensions, J. Stat. Mech. (2005) P12012.

  85. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  86. M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, 10th anniversary ed., Cambridge University Press, Cambridge, U.K. (2010), [DOI].

  87. H.M. Wiseman and J.A. Vaccaro, Entanglement of Indistinguishable Particles Shared between Two Parties, Phys. Rev. Lett. 91 (2003) 097902.

    ADS  Article  Google Scholar 

  88. M. Kiefer-Emmanouilidis, R. Unanyan, J. Sirker and M. Fleischhauer, Bounds on the entanglement entropy by the number entropy in non-interacting fermionic systems, SciPost Phys. 8 (2020) 083.

    ADS  MathSciNet  Article  Google Scholar 

  89. M. Kiefer-Emmanouilidis, R. Unanyan, M. Fleischhauer and J. Sirker, Slow delocalization of particles in many-body localized phases, Phys. Rev. B 103 (2021) 024203 [INSPIRE].

    ADS  Article  Google Scholar 

  90. L.A. Rubel, Necessary and sufficient conditions for Carlson’s theorem on entire functions, Proc. Nat. Acad. Sci. 41 (1955) 601.

    ADS  MathSciNet  MATH  Article  Google Scholar 

  91. E. Cornfeld and E. Sela, Entanglement entropy and boundary renormalization group flow: Exact results in the Ising universality class, Phys. Rev. B 96 (2017) 075153 [arXiv:1705.04181] [INSPIRE].

    ADS  Article  Google Scholar 

  92. S.L. Lukyanov and A.B. Zamolodchikov, Exact expectation values of local fields in quantum sine-Gordon model, Nucl. Phys. B 493 (1997) 571 [hep-th/9611238] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid X. Horváth.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2103.03197

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horváth, D.X., Capizzi, L. & Calabrese, P. U(1) symmetry resolved entanglement in free 1+1 dimensional field theories via form factor bootstrap. J. High Energ. Phys. 2021, 197 (2021). https://doi.org/10.1007/JHEP05(2021)197

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2021)197

Keywords

  • Field Theories in Lower Dimensions
  • Global Symmetries
  • Integrable Field
  • Theories