Skip to main content

Integrability, intertwiners and non-linear algebras in Calogero models

A preprint version of the article is available at arXiv.

Abstract

For the rational quantum Calogero systems of type A1A2, AD3 and BC3, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra ‘odd’ charges appearing for integral couplings. Formulæ for the energy eigenstates are used to tabulate the low-level wave functions.

References

  1. F. Calogero, Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419 [Erratum ibid. 37 (1996) 3646] [INSPIRE].

  2. S. Wojciechowski, Superintegrability of the Calogero-Moser system, Phys. Lett. A 95 (1983) 279.

    ADS  MathSciNet  Article  Google Scholar 

  3. M. A. Olshanetsky and A. M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Rept. 94 (1983) 313 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. A. P. Polychronakos, Physics and mathematics of Calogero particles, J. Phys. A 39 (2006) 12793 [hep-th/0607033] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. A. P. Polychronakos, Exchange interactions, Yang-Baxter relations and transparent particles, Nucl. Phys. B 961 (2020) 115243 [arXiv:2006.14624] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  6. V. B. Kuznetsov, Hidden symmetry of the quantum Calogero-Moser system, Phys. Lett. A 218 (1996) 212 [solv-int/9509001] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. F. Correa, O. Lechtenfeld and M. Plyushchay, Nonlinear supersymmetry in the quantum Calogero model, JHEP 04 (2014) 151 [arXiv:1312.5749] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989) 167.

    MathSciNet  Article  Google Scholar 

  9. M. Rösler, Dunkl operators: theory and applications, lecture notes for the SIAM activity group OP-SF summer school, Leuven, Belgium, (2002) [math.CA/0210366].

  10. F. Correa and O. Lechtenfeld, The tetrahexahedric angular Calogero model, JHEP 10 (2015) 191 [arXiv:1508.04925] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. F. Correa and O. Lechtenfeld, \( \mathcal{PT} \) deformation of angular Calogero models, JHEP 11 (2017) 122 [arXiv:1705.05425] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. F. Correa and O. Lechtenfeld, \( \mathcal{PT} \) deformation of Calogero-Sutherland models, JHEP 05 (2019) 166 [arXiv:1903.06481] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Lechtenfeld.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.07274

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Morales, F., Correa, F. & Lechtenfeld, O. Integrability, intertwiners and non-linear algebras in Calogero models. J. High Energ. Phys. 2021, 163 (2021). https://doi.org/10.1007/JHEP05(2021)163

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2021)163

Keywords

  • Integrable Field Theories
  • Conformal and W Symmetry
  • Discrete Symmetries
  • Integrable Hierarchies