Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Global fits of axion-like particles to XENON1T and astrophysical data
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT

28 March 2019

Sebastian Hoof, Felix Kahlhoefer, … Martin White

Parameters of Axion-Like Particles Required to Explain High-Energy Photons from GRB 221009A

29 November 2022

S. V. Troitsky

Constraining axion-like particles with the diffuse gamma-ray flux measured by the Large High Altitude Air Shower Observatory

11 November 2022

Leonardo Mastrototaro, Pierluca Carenza, … Daniele Montanino

Constraining axion-like-particles with hard X-ray emission from magnetars

08 June 2018

Jean-François Fortin & Kuver Sinha

An approximate likelihood for nuclear recoil searches with XENON1T data

03 November 2022

E. Aprile, K. Abe, … XENON Collaboration

Axion-like relics: new constraints from old comagnetometer data

28 January 2020

Itay M. Bloch, Yonit Hochberg, … Tomer Volansky

Sun heated MeV-scale dark matter and the XENON1T electron recoil excess

29 April 2021

Yifan Chen, Ming-Yang Cui, … Qiang Yuan

A simple and natural interpretations of the DAMPE cosmic-ray electron/positron spectrum within two sigma deviations

08 February 2019

Jia-Shu Niu, Tianjun Li & Fang-Zhou Xu

Exploring new physics with O(keV) electron recoils in direct detection experiments

27 January 2021

Itay M. Bloch, Andrea Caputo, … Tomer Volansky

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 May 2021

Global fits of axion-like particles to XENON1T and astrophysical data

  • Peter Athron1,2,
  • Csaba Balázs2,
  • Ankit Beniwal3,
  • J. Eliel Camargo-Molina4,
  • Andrew Fowlie2,
  • Tomás E. Gonzalo2,
  • Sebastian Hoof5,
  • Felix Kahlhoefer6,
  • David J. E. Marsh7,5,
  • Markus Tobias Prim8,
  • Andre Scaffidi9,
  • Pat Scott10,4,
  • Wei Su11,
  • Martin White11,
  • Lei Wu2 &
  • …
  • Yang Zhang2,12 

Journal of High Energy Physics volume 2021, Article number: 159 (2021) Cite this article

  • 192 Accesses

  • 23 Citations

  • 11 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

The excess of electron recoil events seen by the XENON1T experiment has been interpreted as a potential signal of axion-like particles (ALPs), either produced in the Sun, or constituting part of the dark matter halo of the Milky Way. It has also been explained as a consequence of trace amounts of tritium in the experiment. We consider the evidence for the solar and dark-matter ALP hypotheses from the combination of XENON1T data and multiple astrophysical probes, including horizontal branch stars, red giants, and white dwarfs. We briefly address the influence of ALP decays and supernova cooling. While the different datasets are in clear tension for the case of solar ALPs, all measurements can be simultaneously accommodated for the case of a sub-dominant fraction of dark-matter ALPs. Nevertheless, this solution requires the tuning of several a priori unknown parameters, such that for our choices of priors a Bayesian analysis shows no strong preference for the ALP interpretation of the XENON1T excess over the background hypothesis.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].

  2. G. Choi, M. Suzuki and T.T. Yanagida, XENON1T anomaly and its implication for decaying warm dark matter, Phys. Lett. B 811 (2020) 135976 [arXiv:2006.12348] [INSPIRE].

    Article  Google Scholar 

  3. D. Aristizabal Sierra, V. De Romeri, L.J. Flores and D.K. Papoulias, Light vector mediators facing XENON1T data, Phys. Lett. B 809 (2020) 135681 [arXiv:2006.12457] [INSPIRE].

    Article  Google Scholar 

  4. N.F. Bell, J.B. Dent, B. Dutta, S. Ghosh, J. Kumar and J.L. Newstead, Explaining the XENON1T excess with luminous dark matter, Phys. Rev. Lett. 125 (2020) 161803 [arXiv:2006.12461] [INSPIRE].

    Article  ADS  Google Scholar 

  5. G. Paz, A.A. Petrov, M. Tammaro and J. Zupan, Shining dark matter in XENON1T, Phys. Rev. D 103 (2021) L051703 [arXiv:2006.12462] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Y. Chen, M.-Y. Cui, J. Shu, X. Xue, G.-W. Yuan and Q. Yuan, Sun heated MeV-scale dark matter and the XENON1T electron recoil excess, JHEP 04 (2021) 282 [arXiv:2006.12447] [INSPIRE].

    Article  ADS  Google Scholar 

  7. R. Primulando, J. Julio and P. Uttayarat, Collider constraints on a dark matter interpretation of the XENON1T excess, Eur. Phys. J. C 80 (2020) 1084 [arXiv:2006.13161] [INSPIRE].

    Article  ADS  Google Scholar 

  8. L. Di Luzio, M. Fedele, M. Giannotti, F. Mescia and E. Nardi, Solar axions cannot explain the XENON1T excess, Phys. Rev. Lett. 125 (2020) 131804 [arXiv:2006.12487] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Du, J. Liang, Z. Liu, V.Q. Tran and Y. Xue, On-shell mediator dark matter models and the XENON1T excess, Chin. Phys. C 45 (2021) 013114 [arXiv:2006.11949] [INSPIRE].

    Article  ADS  Google Scholar 

  10. L. Su, W. Wang, L. Wu, J.M. Yang and B. Zhu, Atmospheric dark matter and XENON1T excess, Phys. Rev. D 102 (2020) 115028 [arXiv:2006.11837] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A. Bally, S. Jana and A. Trautner, Neutrino self-interactions and XENON1T electron recoil excess, Phys. Rev. Lett. 125 (2020) 161802 [arXiv:2006.11919] [INSPIRE].

    Article  ADS  Google Scholar 

  12. K. Harigaya, Y. Nakai and M. Suzuki, Inelastic dark matter electron scattering and the XENON1T excess, Phys. Lett. B 809 (2020) 135729 [arXiv:2006.11938] [INSPIRE].

    Article  Google Scholar 

  13. C. Boehm, D.G. Cerdeno, M. Fairbairn, P.A.N. Machado and A.C. Vincent, Light new physics in XENON1T, Phys. Rev. D 102 (2020) 115013 [arXiv:2006.11250] [INSPIRE].

    Article  ADS  Google Scholar 

  14. D.W.P.d. Amaral, D.G. Cerdeno, P. Foldenauer and E. Reid, Solar neutrino probes of the muon anomalous magnetic moment in the gauged \( \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \), JHEP 12 (2020) 155 [arXiv:2006.11225] [INSPIRE].

  15. B. Fornal, P. Sandick, J. Shu, M. Su and Y. Zhao, Boosted dark matter interpretation of the XENON1T excess, Phys. Rev. Lett. 125 (2020) 161804 [arXiv:2006.11264] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Alonso-Álvarez, F. Ertas, J. Jaeckel, F. Kahlhoefer and L.J. Thormaehlen, Hidden photon dark matter in the light of XENON1T and stellar cooling, JCAP 11 (2020) 029 [arXiv:2006.11243] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Kannike, M. Raidal, H. Veermäe, A. Strumia and D. Teresi, Dark matter and the XENON1T electron recoil excess, Phys. Rev. D 102 (2020) 095002 [arXiv:2006.10735] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C.A.J. O’Hare, A. Caputo, A.J. Millar and E. Vitagliano, Axion helioscopes as solar magnetometers, Phys. Rev. D 102 (2020) 043019 [arXiv:2006.10415] [INSPIRE].

    Article  ADS  Google Scholar 

  19. F. Takahashi, M. Yamada and W. Yin, XENON1T excess from anomaly-free axionlike dark matter and its implications for stellar cooling anomaly, Phys. Rev. Lett. 125 (2020) 161801 [arXiv:2006.10035] [INSPIRE].

    Article  ADS  Google Scholar 

  20. G.B. Gelmini, V. Takhistov and E. Vitagliano, Scalar direct detection: in-medium effects, Phys. Lett. B 809 (2020) 135779 [arXiv:2006.13909] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  21. M. Baryakhtar, A. Berlin, H. Liu and N. Weiner, Electromagnetic signals of inelastic dark matter scattering, arXiv:2006.13918 [INSPIRE].

  22. L. Zu, G.-W. Yuan, L. Feng and Y.-Z. Fan, Mirror dark matter and electronic recoil events in XENON1T, Nucl. Phys. B 965 (2021) 115369 [arXiv:2006.14577] [INSPIRE].

    Article  Google Scholar 

  23. M. Lindner, Y. Mambrini, T.B. de Melo and F.S. Queiroz, XENON1T anomaly: a light Z′ from a two Higgs doublet model, Phys. Lett. B 811 (2020) 135972 [arXiv:2006.14590] [INSPIRE].

    Article  Google Scholar 

  24. K. Zioutas, G. Cantatore, M. Karuza, A. Kryemadhi, M. Maroudas and Y.K. Semertzidis, Response-suggestion to the XENON1T excess: an overlooked dark matter signature?, arXiv:2006.16907 [INSPIRE].

  25. D. McKeen, M. Pospelov and N. Raj, Hydrogen portal to exotic radioactivity, Phys. Rev. Lett. 125 (2020) 231803 [arXiv:2006.15140] [INSPIRE].

    Article  ADS  Google Scholar 

  26. P. Coloma, P. Huber and J.M. Link, Telling solar neutrinos from solar axions when you can’t shut off the sun, arXiv:2006.15767 [INSPIRE].

  27. H. An and D. Yang, Direct detection of freeze-in inelastic dark matter, arXiv:2006.15672 [INSPIRE].

  28. S.-F. Ge, P. Pasquini and J. Sheng, Solar neutrino scattering with electron into massive sterile neutrino, Phys. Lett. B 810 (2020) 135787 [arXiv:2006.16069] [INSPIRE].

    Article  Google Scholar 

  29. C. Dessert, J.W. Foster, Y. Kahn and B.R. Safdi, Systematics in the XENON1T data: the 15 keV anti-axion, arXiv:2006.16220 [INSPIRE].

  30. W. Chao, Y. Gao and M.j. Jin, Pseudo-Dirac dark matter in XENON1T, arXiv:2006.16145 [INSPIRE].

  31. C. Cai, H.H. Zhang, M.T. Frandsen, M. Rosenlyst and G. Cacciapaglia, XENON1T solar axion and the Higgs boson emerging from the dark, Phys. Rev. D 102 (2020) 075018 [arXiv:2006.16267] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. Ko and Y. Tang, Semi-annihilating Z3 dark matter for XENON1T excess, Phys. Lett. B 815 (2021) 136181 [arXiv:2006.15822] [INSPIRE].

    Article  Google Scholar 

  33. Y. Gao and T. Li, Lepton number violating electron recoils at XENON1T by the U(1)B−L model with non-standard interactions, arXiv:2006.16192 [INSPIRE].

  34. J. Sun and X.-G. He, DFSZ axion couplings revisited, Phys. Lett. B 811 (2020) 135881 [arXiv:2006.16931] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  35. S. Baek, J. Kim and P. Ko, XENON1T excess in local Z2 DM models with light dark sector, Phys. Lett. B 810 (2020) 135848 [arXiv:2006.16876] [INSPIRE].

    Article  Google Scholar 

  36. R. Budnik, H. Kim, O. Matsedonskyi, G. Perez and Y. Soreq, Probing the relaxed relaxion and Higgs-portal with S1&S2, arXiv:2006.14568 [INSPIRE].

  37. H.-J. He, Y.-C. Wang and J. Zheng, EFT approach of inelastic dark matter for xenon electron recoil detection, JCAP 01 (2021) 042 [arXiv:2007.04963] [INSPIRE].

    Article  ADS  Google Scholar 

  38. M. Chala and A. Titov, One-loop running of dimension-six Higgs-neutrino operators and implications of a large neutrino dipole moment, JHEP 09 (2020) 188 [arXiv:2006.14596] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. F. Arias-Aragón, F. D’eramo, R.Z. Ferreira, L. Merlo and A. Notari, Cosmic imprints of XENON1T axions, JCAP 11 (2020) 025 [arXiv:2007.06579] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Han, M.L. López-Ibáñez, A. Melis, O. Vives and J.M. Yang, Anomaly-free leptophilic axionlike particle and its flavor violating tests, Phys. Rev. D 103 (2021) 035028 [arXiv:2007.08834] [INSPIRE].

    Article  ADS  Google Scholar 

  41. I.M. Bloch, A. Caputo, R. Essig, D. Redigolo, M. Sholapurkar and T. Volansky, Exploring new physics with O(keV) electron recoils in direct detection experiments, JHEP 01 (2021) 178 [arXiv:2006.14521] [INSPIRE].

    Article  ADS  Google Scholar 

  42. O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, XENON1T signal from transition neutrino magnetic moments, Phys. Lett. B 808 (2020) 135685 [arXiv:2007.01765] [INSPIRE].

    Article  Google Scholar 

  43. S. Chigusa, M. Endo and K. Kohri, Constraints on electron-scattering interpretation of XENON1T excess, JCAP 10 (2020) 035 [arXiv:2007.01663] [INSPIRE].

    Article  ADS  Google Scholar 

  44. D. Croon, S.D. McDermott and J. Sakstein, Missing in axion: where are XENON1T’s big black holes?, Phys. Dark Univ. 32 (2021) 100801 [arXiv:2007.00650] [INSPIRE].

    Article  Google Scholar 

  45. T. Li, The KSVZ axion and pseudo-Nambu-Goldstone boson models for the XENON1T excess, arXiv:2007.00874 [INSPIRE].

  46. H.M. Lee, Exothermic dark matter for XENON1T excess, JHEP 01 (2021) 019 [arXiv:2006.13183] [INSPIRE].

    Article  ADS  Google Scholar 

  47. J. Bramante and N. Song, Electric but not eclectic: thermal relic dark matter for the XENON1T excess, Phys. Rev. Lett. 125 (2020) 161805 [arXiv:2006.14089] [INSPIRE].

    Article  ADS  Google Scholar 

  48. D. Borah, S. Mahapatra, D. Nanda and N. Sahu, Inelastic fermion dark matter origin of XENON1T excess with muon (g − 2) and light neutrino mass, Phys. Lett. B 811 (2020) 135933 [arXiv:2007.10754] [INSPIRE].

    Article  Google Scholar 

  49. Q.-H. Cao, R. Ding and Q.-F. Xiang, Searching for sub-MeV boosted dark matter from xenon electron direct detection, Chin. Phys. C 45 (2021) 045002 [arXiv:2006.12767] [INSPIRE].

    Article  ADS  Google Scholar 

  50. Y. Jho, J.-C. Park, S.C. Park and P.-Y. Tseng, Leptonic new force and cosmic-ray boosted dark matter for the XENON1T excess, Phys. Lett. B 811 (2020) 135863 [arXiv:2006.13910] [INSPIRE].

    Article  Google Scholar 

  51. L. Delle Rose, G. Hütsi, C. Marzo and L. Marzola, Impact of loop-induced processes on the boosted dark matter interpretation of the XENON1T excess, JCAP 02 (2021) 031 [arXiv:2006.16078] [INSPIRE].

    Article  ADS  Google Scholar 

  52. H. Alhazmi, D. Kim, K. Kong, G. Mohlabeng, J.-C. Park and S. Shin, Implications of the XENON1T excess on the dark matter interpretation, arXiv:2006.16252 [INSPIRE].

  53. K. Nakayama and Y. Tang, Gravitational production of hidden photon dark matter in light of the XENON1T excess, Phys. Lett. B 811 (2020) 135977 [arXiv:2006.13159] [INSPIRE].

    Article  Google Scholar 

  54. H. An, M. Pospelov, J. Pradler and A. Ritz, New limits on dark photons from solar emission and keV scale dark matter, Phys. Rev. D 102 (2020) 115022 [arXiv:2006.13929] [INSPIRE].

    Article  ADS  Google Scholar 

  55. C.-W. Chiang and B.-Q. Lu, Evidence of a simple dark sector from XENON1T excess, Phys. Rev. D 102 (2020) 123006 [arXiv:2007.06401] [INSPIRE].

    Article  ADS  Google Scholar 

  56. J. Buch, M.A. Buen-Abad, J. Fan and J.S.C. Leung, Galactic origin of relativistic bosons and XENON1T excess, JCAP 10 (2020) 051 [arXiv:2006.12488] [INSPIRE].

    Article  ADS  Google Scholar 

  57. U.K. Dey, T.N. Maity and T.S. Ray, Prospects of Migdal effect in the explanation of XENON1T electron recoil excess, Phys. Lett. B 811 (2020) 135900 [arXiv:2006.12529] [INSPIRE].

    Article  Google Scholar 

  58. A.N. Khan, Can nonstandard neutrino interactions explain the XENON1T spectral excess?, Phys. Lett. B 809 (2020) 135782 [arXiv:2006.12887] [INSPIRE].

    Article  Google Scholar 

  59. N. Okada, S. Okada, D. Raut and Q. Shafi, Dark matter Z′ and XENON1T excess from U(1)X extended standard model, Phys. Lett. B 810 (2020) 135785 [arXiv:2007.02898] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  60. G. Arcadi, A. Bally, F. Goertz, K. Tame-Narvaez, V. Tenorth and S. Vogl, EFT interpretation of XENON1T electron recoil excess: neutrinos and dark matter, Phys. Rev. D 103 (2021) 023024 [arXiv:2007.08500] [INSPIRE].

    Article  ADS  Google Scholar 

  61. D. Choudhury, S. Maharana, D. Sachdeva and V. Sahdev, Dark matter, muon anomalous magnetic moment, and the XENON1T excess, Phys. Rev. D 103 (2021) 015006 [arXiv:2007.08205] [INSPIRE].

    Article  ADS  Google Scholar 

  62. S. Karmakar and S. Pandey, XENON1T constraints on neutrino non-standard interactions, arXiv:2007.11892 [INSPIRE].

  63. J. Davighi, M. McCullough and J. Tooby-Smith, Undulating dark matter, JHEP 11 (2020) 120 [arXiv:2007.03662] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. K. Van Tilburg, Stellar basins of gravitationally bound particles, arXiv:2006.12431 [INSPIRE].

  65. A.E. Robinson, XENON1T observes tritium, arXiv:2006.13278 [INSPIRE].

  66. M. Szydagis, C. Levy, G.M. Blockinger, A. Kamaha, N. Parveen and G.R.C. Rischbieter, Investigating the XENON1T low-energy electronic recoil excess using NEST, Phys. Rev. D 103 (2021) 012002 [arXiv:2007.00528] [INSPIRE].

    Article  ADS  Google Scholar 

  67. GAMBIT collaboration, GAMBIT: the global and modular beyond-the-standard-model inference tool, Eur. Phys. J. C 77 (2017) 784 [Addendum ibid. 78 (2018) 98] [arXiv:1705.07908] [INSPIRE].

  68. GAMBIT Dark Matter Workgroup collaboration, DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831 [arXiv:1705.07920] [INSPIRE].

  69. A. Kvellestad, P. Scott and M. White, GAMBIT and its application in the search for physics beyond the standard model, Prog. Part. Nucl. Phys. 113 (2020) 103769 [arXiv:1912.04079] [INSPIRE].

    Article  Google Scholar 

  70. S. Hoof, F. Kahlhoefer, P. Scott, C. Weniger and M. White, Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT, JHEP 03 (2019) 191 [Erratum ibid. 11 (2019) 099] [arXiv:1810.07192] [INSPIRE].

  71. C. Gao, J. Liu, L.-T. Wang, X.-P. Wang, W. Xue and Y.-M. Zhong, Reexamining the solar axion explanation for the XENON1T excess, Phys. Rev. Lett. 125 (2020) 131806 [arXiv:2006.14598] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J.B. Dent, B. Dutta, J.L. Newstead and A. Thompson, Inverse Primakoff scattering as a probe of solar axions at liquid xenon direct detection experiments, Phys. Rev. Lett. 125 (2020) 131805 [arXiv:2006.15118] [INSPIRE].

    Article  ADS  Google Scholar 

  73. P. Athron et al., Supplementary material for “Global fits of axion-like particles to XENON1T and astrophysical data”, Zenodo, (2021).

  74. L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept. 870 (2020) 1 [arXiv:2003.01100] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  75. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

    Article  ADS  Google Scholar 

  76. D.J.E. Marsh, Axion cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  77. K. Arisaka et al., Expected sensitivity to galactic/solar axions and bosonic super-WIMPs based on the axio-electric effect in liquid xenon dark matter detectors, Astropart. Phys. 44 (2013) 59 [arXiv:1209.3810] [INSPIRE].

    Article  ADS  Google Scholar 

  78. W. Veigele, Photon cross sections from 0.1 keV to 1 MeV for elements z = 1 to z = 94, Atom. Data Nucl. Data Tabl. 5 (1973) 51.

  79. J. Jaeckel, J. Redondo and A. Ringwald, 3.55 keV hint for decaying axionlike particle dark matter, Phys. Rev. D 89 (2014) 103511 [arXiv:1402.7335] [INSPIRE].

  80. K. Nakayama, F. Takahashi and T.T. Yanagida, Anomaly-free flavor models for Nambu-Goldstone bosons and the 3.5 keV X-ray line signal, Phys. Lett. B 734 (2014) 178 [arXiv:1403.7390] [INSPIRE].

  81. V. Iršič et al., New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96 (2017) 023522 [arXiv:1702.01764] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  82. A.V. Maccio, O. Ruchayskiy, A. Boyarsky and J.C. Muñoz-Cuartas, The inner structure of haloes in cold+warm dark matter models, Mon. Not. Roy. Astron. Soc. 428 (2013) 882 [arXiv:1202.2858] [INSPIRE].

    Article  ADS  Google Scholar 

  83. A. Kamada and K. Yanagi, Constraining FIMP from the structure formation of the universe: analytic mapping from mWDM, JCAP 11 (2019) 029 [arXiv:1907.04558] [INSPIRE].

    Article  ADS  Google Scholar 

  84. N. Vinyoles et al., A new generation of standard solar models, Astrophys. J. 835 (2017) 202 [arXiv:1611.09867] [INSPIRE].

    Article  ADS  Google Scholar 

  85. M. Giannotti, I.G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa, Stellar recipes for axion hunters, JCAP 10 (2017) 010 [arXiv:1708.02111] [INSPIRE].

    Article  ADS  Google Scholar 

  86. M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, Cool WISPs for stellar cooling excesses, JCAP 05 (2016) 057 [arXiv:1512.08108] [INSPIRE].

    Article  ADS  Google Scholar 

  87. E. Aver, K.A. Olive and E.D. Skillman, The effects of He I λ10830 on helium abundance determinations, JCAP 07 (2015) 011 [arXiv:1503.08146] [INSPIRE].

    Article  ADS  Google Scholar 

  88. A.H. Corsico et al., The rate of cooling of the pulsating white dwarf star G117 − B15A: a new asteroseismological inference of the axion mass, Mon. Not. Roy. Astron. Soc. 424 (2012) 2792 [arXiv:1205.6180] [INSPIRE].

  89. A.H. Corsico et al., An independent limit on the axion mass from the variable white dwarf star R548, JCAP 12 (2012) 010 [arXiv:1211.3389] [INSPIRE].

    Article  ADS  Google Scholar 

  90. A.H. Córsico et al., An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19 − 2, JCAP 07 (2016) 036 [arXiv:1605.06458] [INSPIRE].

  91. T. Battich, A.H. Córsico, L.G. Althaus, M.M. Miller Bertolami and M.M.M. Bertolami, First axion bounds from a pulsating helium-rich white dwarf star, JCAP 08 (2016) 062 [arXiv:1605.07668] [INSPIRE].

    Article  ADS  Google Scholar 

  92. XENON collaboration, Data from: observation of excess electronic recoil events in XENON1T, Zenodo, (2020).

  93. J.-W. Chen, H.-C. Chi, C.P. Liu and C.-P. Wu, Low-energy electronic recoil in xenon detectors by solar neutrinos, Phys. Lett. B 774 (2017) 656 [arXiv:1610.04177] [INSPIRE].

    Article  ADS  Google Scholar 

  94. B. Bhattacherjee and R. Sengupta, XENON1T excess: some possible backgrounds, Phys. Lett. B 817 (2021) 136305 [arXiv:2006.16172] [INSPIRE].

    Article  Google Scholar 

  95. XENON collaboration, Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785 [arXiv:2003.03825] [INSPIRE].

  96. G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, University Of Chicago Press, Chicago, IL, U.S.A. and London, U.K. (1996).

  97. D. Cadamuro and J. Redondo, Cosmological bounds on pseudo Nambu-Goldstone bosons, JCAP 02 (2012) 032 [arXiv:1110.2895] [INSPIRE].

    Article  ADS  Google Scholar 

  98. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from globular clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].

    Article  ADS  Google Scholar 

  99. M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    Article  ADS  Google Scholar 

  100. S. Hoof, F. Kahlhoefer, P. Scott, C. Weniger and M. White, Axion global fits with Peccei-Quinn symmetry breaking before inflation using GAMBIT, JHEP 03 (2019) 191 [Erratum ibid. 11 (2019) 099] [arXiv:1810.07192] [INSPIRE].

  101. L. Calibbi, D. Redigolo, R. Ziegler and J. Zupan, Looking forward to lepton-flavor-violating ALPs, arXiv:2006.04795 [INSPIRE].

  102. T. Battich, A.H. Córsico, L.G. Althaus, M.M. Miller Bertolami and M.M.M. Bertolami, First axion bounds from a pulsating helium-rich white dwarf star, JCAP 08 (2016) 062 [arXiv:1605.07668] [INSPIRE].

    Article  ADS  Google Scholar 

  103. S. Horiuchi, P.J. Humphrey, J. Onorbe, K.N. Abazajian, M. Kaplinghat and S. Garrison-Kimmel, Sterile neutrino dark matter bounds from galaxies of the local group, Phys. Rev. D 89 (2014) 025017 [arXiv:1311.0282] [INSPIRE].

    Article  ADS  Google Scholar 

  104. K. Perez, K.C.Y. Ng, J.F. Beacom, C. Hersh, S. Horiuchi and R. Krivonos, Almost closing the νMSM sterile neutrino dark matter window with NuSTAR, Phys. Rev. D 95 (2017) 123002 [arXiv:1609.00667] [INSPIRE].

    Article  ADS  Google Scholar 

  105. N. Bar, K. Blum and G. D’Amico, Is there a supernova bound on axions?, Phys. Rev. D 101 (2020) 123025 [arXiv:1907.05020] [INSPIRE].

    Article  ADS  Google Scholar 

  106. R. Bollig, W. DeRocco, P.W. Graham and H.-T. Janka, Muons in supernovae: implications for the axion-muon coupling, Phys. Rev. Lett. 125 (2020) 051104 [arXiv:2005.07141] [INSPIRE].

    Article  ADS  Google Scholar 

  107. P. Carenza, T. Fischer, M. Giannotti, G. Guo, G. Martínez-Pinedo and A. Mirizzi, Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung, JCAP 10 (2019) 016 [Erratum ibid. 05 (2020) E01] [arXiv:1906.11844] [INSPIRE].

  108. L. Di Luzio, F. Mescia and E. Nardi, Redefining the axion window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].

    Article  ADS  Google Scholar 

  109. H. Jeffreys, The theory of probability, Oxford Classic Texts in the Physical Sciences, Oxford University Press, Oxford, U.K. (1939).

  110. S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Annals Math. Statist. 9 (1938) 60 [INSPIRE].

    Article  MATH  Google Scholar 

  111. S. Algeri, J. Aalbers, K.D. Morå and J. Conrad, Searching for new phenomena with profile likelihood ratio tests, Nature Rev. Phys. 2 (2020) 245.

    Article  ADS  Google Scholar 

  112. D.J.C. MacKay, Information theory, inference & learning algorithms, Cambridge University Press, U.S.A. (2002).

    Google Scholar 

  113. J.O. Berger and M. Delampady, Testing precise hypotheses, Statist. Sci. 2 (1987) 317.

    MathSciNet  MATH  Google Scholar 

  114. A. Neronov and D. Malyshev, Toward a full test of the νMSM sterile neutrino dark matter model with Athena, Phys. Rev. D 93 (2016) 063518 [arXiv:1509.02758] [INSPIRE].

    Article  ADS  Google Scholar 

  115. nEDM collaboration, Measurement of the permanent electric dipole moment of the neutron, Phys. Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].

  116. ADMX collaboration, Extended search for the invisible axion with the Axion Dark Matter Experiment, Phys. Rev. Lett. 124 (2020) 101303 [arXiv:1910.08638] [INSPIRE].

  117. QUAX collaboration, Axion search with a quantum-limited ferromagnetic haloscope, Phys. Rev. Lett. 124 (2020) 171801 [arXiv:2001.08940] [INSPIRE].

  118. L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite, Living Rev. Rel. 21 (2018) 2 [arXiv:1606.00180] [INSPIRE].

    Article  Google Scholar 

  119. GAMBIT collaboration, Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761 [arXiv:1705.07959] [INSPIRE].

  120. F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].

    Article  ADS  Google Scholar 

  121. F. Feroz, M.P. Hobson, E. Cameron and A.N. Pettitt, Importance nested sampling and the MultiNest algorithm, Open J. Astrophys. 2 (2019) 10 [arXiv:1306.2144] [INSPIRE].

    Article  Google Scholar 

  122. P. Scott, Pippi — painless parsing, post-processing and plotting of posterior and likelihood samples, Eur. Phys. J. Plus 127 (2012) 138 [arXiv:1206.2245] [INSPIRE].

    Article  Google Scholar 

  123. J.D. Hunter, Matplotlib: a 2D graphics environment, Comput. Sci. Eng. 9 (2007) 90 [INSPIRE].

    Article  Google Scholar 

  124. P. Virtanen et al., SciPy 1.0: fundamental algorithms for scientific computing in Python, Nature Meth. 17 (2020) 261.

  125. S. van der Walt, S.C. Colbert and G. Varoquaux, The NumPy array: a structure for efficient numerical computation, Comput. Sci. Eng. 13 (2011) 22.

    Article  Google Scholar 

  126. R.E. Kass and A.E. Raftery, Bayes factors, J. Amer. Statist. Assoc. 90 (1995) 773.

    Article  MathSciNet  MATH  Google Scholar 

  127. R.E. Kass and L. Wasserman, The selection of prior distributions by formal rules, J. Amer. Statist. Assoc. 91 (1996) 1343.

    Article  MATH  Google Scholar 

  128. G. Consonni, D. Fouskakis, B. Liseo and I. Ntzoufras, Prior distributions for objective Bayesian analysis, Bayesian Anal. 13 (2018) 627.

    Article  MathSciNet  MATH  Google Scholar 

  129. J. Berger and L. Pericchi, Bayes factors, in Wiley StatsRef: statistics reference online, John Wiley & Sons Inc., U.S.A. (2015), pg. 1.

  130. A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian data analysis, third edition, Texts in statistical science, Chapman & Hall/CRC, (2004).

  131. W.J. Handley, M.P. Hobson and A.N. Lasenby, PolyChord: nested sampling for cosmology, Mon. Not. Roy. Astron. Soc. 450 (2015) L61 [arXiv:1502.01856] [INSPIRE].

    Article  ADS  Google Scholar 

  132. A. Fowlie, W. Handley and L. Su, Nested sampling cross-checks using order statistics, Mon. Not. Roy. Astron. Soc. 497 (2020) 5256 [arXiv:2006.03371] [INSPIRE].

    Article  ADS  Google Scholar 

  133. A. Fowlie, Bayesian and frequentist approaches to resonance searches, 2019 JINST 14 P10031 [arXiv:1902.03243] [INSPIRE].

  134. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    Article  ADS  Google Scholar 

  135. DELPHI collaboration, Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].

  136. M.J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer and K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094 [Erratum ibid. 03 (2021) 190] [arXiv:1709.00009] [INSPIRE].

  137. F. Ertas and F. Kahlhoefer, On the interplay between astrophysical and laboratory probes of MeV-scale axion-like particles, JHEP 07 (2020) 050 [arXiv:2004.01193] [INSPIRE].

    Article  ADS  Google Scholar 

  138. D.J. Spiegelhalter, N.G. Best, B.P. Carlin and A. van der Linde, Bayesian measures of model complexity and fit, J. Roy. Statist. Soc. B 64 (2002) 583.

    Article  MathSciNet  MATH  Google Scholar 

  139. W. Handley and P. Lemos, Quantifying dimensionality: Bayesian cosmological model complexities, Phys. Rev. D 100 (2019) 023512 [arXiv:1903.06682] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  140. E. Gross and O. Vitells, Trial factors for the look elsewhere effect in high energy physics, Eur. Phys. J. C 70 (2010) 525 [arXiv:1005.1891] [INSPIRE].

    Article  ADS  Google Scholar 

  141. C. Blocker et al., Simple facts about p-values, Tech. Rep. CDF/MEMO/STATISTICS/PUBLIC/8023, Fermilab, Batavia, IL, U.S.A. (2006).

  142. H. Chernoff, On the distribution of the likelihood ratio, Ann. Math. Statist. 25 (1954) 573.

  143. S.G. Self and K.-Y. Liang, Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Amer. Statist. Assoc. 82 (1987) 605.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Wenyuan Road, Nanjing, 210023, Jiangsu, China

    Peter Athron

  2. School of Physics and Astronomy, Monash University, Wellington Rd, Melbourne, VIC, 3800, Australia

    Peter Athron, Csaba Balázs, Andrew Fowlie, Tomás E. Gonzalo, Lei Wu & Yang Zhang

  3. Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium

    Ankit Beniwal

  4. Department of Physics, Imperial College London, Blackett Laboratory, Prince Consort Road, London, SW7 2AZ, U.K.

    J. Eliel Camargo-Molina & Pat Scott

  5. Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Sebastian Hoof & David J. E. Marsh

  6. Institute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056, Aachen, Germany

    Felix Kahlhoefer

  7. Department of Physics, King’s College London, Strand, London, WC2R 2LS, U.K.

    David J. E. Marsh

  8. Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn, Nussallee 12, 53115, Bonn, Germany

    Markus Tobias Prim

  9. Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, I-10125, Torino, Italy

    Andre Scaffidi

  10. School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia

    Pat Scott

  11. ARC Centre of Excellence for Dark Matter Particle Physics & CSSM, Department of Physics, University of Adelaide, North Terrace, Adelaide, SA, 5005, Australia

    Wei Su & Martin White

  12. School of Physics, Zhengzhou University, No. 100 Science Avenue, ZhengZhou, 450001, China

    Yang Zhang

Authors
  1. Peter Athron
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Csaba Balázs
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Ankit Beniwal
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. J. Eliel Camargo-Molina
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Andrew Fowlie
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Tomás E. Gonzalo
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Sebastian Hoof
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Felix Kahlhoefer
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. David J. E. Marsh
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Markus Tobias Prim
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Andre Scaffidi
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Pat Scott
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. Wei Su
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. Martin White
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. Lei Wu
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. Yang Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Andrew Fowlie.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2007.05517

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Athron, P., Balázs, C., Beniwal, A. et al. Global fits of axion-like particles to XENON1T and astrophysical data. J. High Energ. Phys. 2021, 159 (2021). https://doi.org/10.1007/JHEP05(2021)159

Download citation

  • Received: 05 August 2020

  • Revised: 31 March 2021

  • Accepted: 14 April 2021

  • Published: 18 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)159

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.