Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory


This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for the final system and thus serve as prototype for IAXO, but at the same time as a fully-fledged helioscope with relevant physics reach itself, and with potential for discovery. The BabyIAXO magnet will feature two 10 m long, 70 cm diameter bores, and will host two detection lines (optics and detector) of dimensions similar to the final ones foreseen for IAXO. BabyIAXO will detect or reject solar axions or ALPs with axion-photon couplings down to g ∼ 1.5 × 1011 GeV1, and masses up to ma ∼ 0.25 eV. BabyIAXO will offer additional opportunities for axion research in view of IAXO, like the development of precision x-ray detectors to identify particular spectral features in the solar axion spectrum, and the implementation of radiofrequency-cavity-based axion dark matter setups.

A preprint version of the article is available at ArXiv.


  1. [1]

    R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

  9. [9]

    I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys. 102 (2018) 89 [arXiv:1801.08127] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    P. Sikivie, Experimental tests of the invisible axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [INSPIRE].

  11. [11]

    K. Zioutas et al., A decommissioned LHC model magnet as an axion telescope, Nucl. Instrum. Meth. A 425 (1999) 480 [astro-ph/9801176] [INSPIRE].

  12. [12]

    CAST collaboration, First results from the CERN Axion Solar Telescope (CAST), Phys. Rev. Lett. 94 (2005) 121301 [hep-ex/0411033] [INSPIRE].

  13. [13]

    CAST collaboration, An improved limit on the axion-photon coupling from the CAST experiment, JCAP 04 (2007) 010 [hep-ex/0702006] [INSPIRE].

  14. [14]

    CAST collaboration, Probing eV-scale axions with CAST, JCAP 02 (2009) 008 [arXiv:0810.4482] [INSPIRE].

  15. [15]

    CAST collaboration, Search for solar axions by the CERN Axion Solar Telescope with 3He buffer gas: closing the hot dark matter gap, Phys. Rev. Lett. 112 (2014) 091302 [arXiv:1307.1985] [INSPIRE].

  16. [16]

    CAST collaboration, New CAST limit on the axion-photon interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [INSPIRE].

  17. [17]

    F. Aznar et al., A MicrOMEGAs-based low-background x-ray detector coupled to a slumped-glass telescope for axion research, JCAP 12 (2015) 008 [arXiv:1509.06190] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    I.G. Irastorza et al., Towards a new generation axion helioscope, JCAP 06 (2011) 013 [arXiv:1103.5334] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 12 (2013) 008 [arXiv:1310.0823] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    E. Armengaud et al., Conceptual design of the International Axion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].

  21. [21]

    IAXO collaboration, Physics potential of the International Axion Observatory (IAXO), JCAP 06 (2019) 047 [arXiv:1904.09155] [INSPIRE].

  22. [22]

    L. Di Luzio, F. Mescia and E. Nardi, Redefining the axion window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    M. Giannotti, I.G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa, Stellar recipes for axion hunters, JCAP 10 (2017) 010 [arXiv:1708.02111] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept. 870 (2020) 1 [arXiv:2003.01100] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    A. De Angelis, G. Galanti and M. Roncadelli, Relevance of axion-like particles for very-high-energy astrophysics, Phys. Rev. D 84 (2011) 105030 [Erratum ibid. 87 (2013) 109903] [arXiv:1106.1132] [INSPIRE].

  26. [26]

    D. Horns and M. Meyer, Indications for a pair-production anomaly from the propagation of VHE gamma-rays, JCAP 02 (2012) 033 [arXiv:1201.4711] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    H.E.S.S. collaboration, A Low level of extragalactic background light as revealed by gamma-rays from blazars, Nature 440 (2006) 1018 [astro-ph/0508073] [INSPIRE].

  28. [28]

    MAGIC collaboration, Very-high-energy gamma rays from a distant quasar: how transparent is the universe?, Science 320 (2008) 1752 [arXiv:0807.2822] [INSPIRE].

  29. [29]

    MAGIC collaboration, Discovery of very high energy gamma-rays from the distant flat spectrum radio quasar 3C 279 with the MAGIC telescope, arXiv:0709.1475 [INSPIRE].

  30. [30]

    M. Meyer, D. Horns and M. Raue, First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations, Phys. Rev. D 87 (2013) 035027 [arXiv:1302.1208] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    C. Csáki, N. Kaloper, M. Peloso and J. Terning, Super GZK photons from photon axion mixing, JCAP 05 (2003) 005 [hep-ph/0302030] [INSPIRE].

  32. [32]

    A. De Angelis, O. Mansutti, M. Persic and M. Roncadelli, Photon propagation and the VHE gamma-ray spectra of blazars: how transparent is really the Universe?, Mon. Not. Roy. Astron. Soc. 394 (2009) L21 [arXiv:0807.4246] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    M. Roncadelli, A. De Angelis and O. Mansutti, Evidence for a new light boson from cosmological gamma-ray propagation?, AIP Conf. Proc. 1018 (2008) 147 [arXiv:0902.0895] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    M. Simet, D. Hooper and P.D. Serpico, The Milky Way as a kiloparsec-scale axionscope, Phys. Rev. D 77 (2008) 063001 [arXiv:0712.2825] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    M.A. Sanchez-Conde, D. Paneque, E. Bloom, F. Prada and A. Dominguez, Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources, Phys. Rev. D 79 (2009) 123511 [arXiv:0905.3270] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A. Dominguez, M.A. Sanchez-Conde and F. Prada, Axion-like particle imprint in cosmological very-high-energy sources, JCAP 11 (2011) 020 [arXiv:1106.1860] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    G.I. Rubtsov and S.V. Troitsky, Breaks in gamma-ray spectra of distant blazars and transparency of the Universe, JETP Lett. 100 (2014) 355 [arXiv:1406.0239] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    K. Kohri and H. Kodama, Axion-like particles and recent observations of the cosmic infrared background radiation, Phys. Rev. D 96 (2017) 051701 [arXiv:1704.05189] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    P. Di Vecchia, M. Giannotti, M. Lattanzi and A. Lindner, Round table on axions and axion-like particles, PoS Confinement2018 (2019) 034 [arXiv:1902.06567] [INSPIRE].

  40. [40]

    J. Isern, E. Garcia-Berro, L.G. Althaus and A.H. Corsico, Axions and the pulsation periods of variable white dwarfs revisited, Astron. Astrophys. 512 (2010) A86 [arXiv:1001.5248] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    A.H. Córsico et al., An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2, JCAP 07 (2016) 036 [arXiv:1605.06458] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    A.H. Corsico et al., The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass, Mon. Not. Roy. Astron. Soc. 424 (2012) 2792 [arXiv:1205.6180] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    A.H. Corsico et al., An independent limit on the axion mass from the variable white dwarf star R548, JCAP 12 (2012) 010 [arXiv:1211.3389] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    T. Battich, A.H. Córsico, L.G. Althaus, M.M. Miller Bertolami and M.M.M. Bertolami, First axion bounds from a pulsating helium-rich white dwarf star, JCAP 08 (2016) 062 [arXiv:1605.07668] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    J. Isern, M. Hernanz and E. Garcia-Berro, Axion cooling of white dwarfs, Astrophys. J. Lett. 392 (1992) L23 [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    J. Isern, E. Garcia-Berro, S. Torres and S. Catalan, Axions and the cooling of white dwarf stars, Astrophys. J. Lett. 682 (2008) L109 [arXiv:0806.2807] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    F. Capozzi and G. Raffelt, Axion and neutrino bounds improved with new calibrations of the tip of the red-giant branch using geometric distance determinations, Phys. Rev. D 102 (2020) 083007 [arXiv:2007.03694] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    N. Viaux et al., Particle-physics constraints from the globular cluster M5: neutrino dipole moments, Astron. Astrophys. 558 (2013) A12 [arXiv:1308.4627] [INSPIRE].

    Article  Google Scholar 

  50. [50]

    N. Viaux et al., Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett. 111 (2013) 231301 [arXiv:1311.1669] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    O. Straniero et al., The RGB tip of galactic globular clusters and the revision of the axion-electron coupling bound, Astron. Astrophys. 644 (2020) A166 [arXiv:2010.03833] [INSPIRE].

    Article  Google Scholar 

  52. [52]

    A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    O. Straniero et al., Axion-photon coupling: astrophysical constraints, in the proceedings of the 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015), June 22–26, Zaragoza, Spain (2015), [INSPIRE].

  54. [54]

    R.C.D.-P.E.D. Skillman, The ratio of blue to red supergiants in sextans a from HST imaging, astro-ph/0203284 [INSPIRE].

  55. [55]

    K.B.W. McQuinn et al., Observational constraints on red and blue helium burning sequences, Astrophys. J. 740 (2011) 48 [arXiv:1108.1405] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    W.C.G. Ho and C.O. Heinke, A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant, Nature 462 (2009) 71 [arXiv:0911.0672] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    C.O. Heinke and W.C.G. Ho, Direct observation of the cooling of the Cassiopeia A neutron star, Astrophys. J. Lett. 719 (2010) L167 [arXiv:1007.4719] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    P.S. Shternin, D.G. Yakovlev, C.O. Heinke, W.C.G. Ho and D.J. Patnaude, Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core, Mon. Not. Roy. Astron. Soc. 412 (2011) L108 [arXiv:1012.0045] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, Cool WISPs for stellar cooling excesses, JCAP 05 (2016) 057 [arXiv:1512.08108] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    M. Gorghetto, E. Hardy and G. Villadoro, Axions from strings: the attractive solution, JHEP 07 (2018) 151 [arXiv:1806.04677] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  61. [61]

    M. Gorghetto, E. Hardy and G. Villadoro, More axions from strings, SciPost Phys. 10 (2021) 050 [arXiv:2007.04990] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  62. [62]

    A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario, Phys. Rev. D 93 (2016) 085031 [Addendum ibid. 94 (2016) 049908] [arXiv:1512.06436] [INSPIRE].

  63. [63]

    P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megaHertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    N. Houston, C. Li, T. Li, Q. Yang and X. Zhang, Natural explanation for 21 cm absorption signals via axion-induced cooling, Phys. Rev. Lett. 121 (2018) 111301 [arXiv:1805.04426] [INSPIRE].

    ADS  Article  Google Scholar 

  66. [66]

    C. Li, N. Houston, T. Li, Q. Yang and X. Zhang, A detailed exploration of the EDGES 21cm absorption anomaly and axion-induced cooling, Int. J. Mod. Phys. D 30 (2021) 2150041 [arXiv:1812.03931] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    J.L. Bernal, L. Verde and A.G. Riess, The trouble with H0, JCAP 10 (2016) 019 [arXiv:1607.05617] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    M.S. Turner, Thermal production of not so invisible axions in the early Universe, Phys. Rev. Lett. 59 (1987) 2489 [Erratum ibid. 60 (1988) 1101] [INSPIRE].

  69. [69]

    CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  70. [70]

    SPT-3G collaboration, SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole Telescope, Proc. SPIE Int. Soc. Opt. Eng. 9153 (2014) 91531P [arXiv:1407.2973] [INSPIRE].

  71. [71]

    R.Z. Ferreira and A. Notari, Observable windows for the QCD axion through the number of relativistic species, Phys. Rev. Lett. 120 (2018) 191301 [arXiv:1801.06090] [INSPIRE].

    ADS  Article  Google Scholar 

  72. [72]

    F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal, Hot axions and the H0 tension, JCAP 11 (2018) 014 [arXiv:1808.07430] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, JHEP 02 (2018) 104 [arXiv:1710.11107] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP 05 (2017) 044 [arXiv:1702.03284] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    R.T. Co, L.J. Hall and K. Harigaya, Predictions for axion couplings from ALP cogenesis, JHEP 01 (2021) 172 [arXiv:2006.04809] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    T. Dafni et al., Weighing the solar axion, Phys. Rev. D 99 (2019) 035037 [arXiv:1811.09290] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    J. Jaeckel and L.J. Thormaehlen, Distinguishing axion models with IAXO, JCAP 03 (2019) 039 [arXiv:1811.09278] [INSPIRE].

    ADS  Article  Google Scholar 

  78. [78]

    Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, MicrOMEGAs: a high granularity position sensitive gaseous detector for high particle flux environments, Nucl. Instrum. Meth. A 376 (1996) 29 [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    S. Andriamonje et al., Development and performance of Microbulk MicrOMEGAs detectors, 2010 JINST 5 P02001 [INSPIRE].

  80. [80]

    P. Abbon et al., The MicrOMEGAs detector of the CAST experiment, New J. Phys. 9 (2007) 170 [physics/0702190] [INSPIRE].

  81. [81]

    C. Krieger, K. Desch, J. Kaminski, M. Lupberger and T. Vafeiadis, An InGrid based low energy x-ray detector for the CAST experiment, PoS(TIPP2014)060 [INSPIRE].

  82. [82]

    S. Mertens et al., Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos, JCAP 02 (2015) 020 [arXiv:1409.0920].

    ADS  Article  Google Scholar 

  83. [83]

    S. Mertens et al., A novel detector system for KATRIN to search for keV-scale sterile neutrinos, J. Phys. G 46 (2019) 065203.

    ADS  Article  Google Scholar 

  84. [84]

    A. Fleischmann et al., Metallic magnetic calorimeters, AIP Conf. Proc. 1185 (2009) 571.

    ADS  Article  Google Scholar 

  85. [85]

    L. Ravera et al., The X-ray Integral Field Unit (X-IFU) for Athena, SPIE Proc. (2014) 91442L.

  86. [86]

    B. Cabrera, Introduction to TES physics, J. Low Temp. Phys. 151 (2008) 82.

    ADS  Article  Google Scholar 

  87. [87]

    F.A. Harrison et al., The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission, Astrophys. J. 770 (2013) 103 [arXiv:1301.7307] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    T. Okajima et al., Characterization of the supermirror hard-x-ray telescope for the infocus balloon experiment, Appl. Opt. 41 (2002) 5417.

    ADS  Article  Google Scholar 

  89. [89]

    T. Takahashi et al., Hitomi (ASTRO-H) X-ray Astronomy Satellite, J. Astron. Telesc. Instrum. Syst. 4 (2018) 021402.

    ADS  Article  Google Scholar 

  90. [90]

    T. Okajima, P.J. Serlemitsos, Y. Soong and D.J. Hahne, First measurement of the ASTRO-H soft x-ray telescope performance, SPIE Proc. 8443 (2012) 572.

    Google Scholar 

  91. [91]

    T. Okajima et al., Performance of NICER flight X-ray concentrator, SPIE Proc. 9905 (2016) 99054X.

    Article  Google Scholar 

  92. [92]

    H. Wolter, Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen, Ann. Phys. 10 (1952) 94.

    MATH  Article  Google Scholar 

  93. [93]

    M. Civitani et al., Cold and Hot Slumped Glass Optics with interfacing ribs for high angular resolution x-ray telescopes, SPIE Proc. 9905 (2016) 99056U.

    Article  Google Scholar 

  94. [94]

    F. Jansen et al., XMM-Newton observatory. I. The spacecraft and operations., Astron. Astrophys. 365 (2001) L1 [INSPIRE].

  95. [95]

    S. Aune et al., Low background x-ray detection with MicrOMEGAs for axion research, 2014 JINST 9 P01001 [arXiv:1310.3391] [INSPIRE].

  96. [96]

    C. Margalejo, Modelo de fondo para IAXO-D0, prototipo del experimento IAXO, Master Thesis, Universidad de Zaragoza, Zaragoza, Spain (2019).

  97. [97]

    I.G. Irastorza et al., Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter, JCAP 01 (2016) 034 [Erratum ibid. 05 (2016) E01] [arXiv:1512.06294] [INSPIRE].

  98. [98]

    P. Baron et al., Operational experience with the readout system of the MINOS vertex tracker, IEEE Trans. Nucl. Sci. 64 (2017) 1494.

    ADS  Article  Google Scholar 

  99. [99]

    E. Ruiz-Choliz, Desarrollo de detectores gaseosos con plano de lectura pixelado (Micromegas) para la detección y caracterización de partículas subátomicas: Los detectores de Rayos X del experimento IAXO, Ph.D. thesis, Universidad de Zaragoza, Zaragoza, Spain (2019).

  100. [100]

    S. Anvar et al., Aget, the get front-end asic, for the readout of the time projection chambers used in nuclear physic experiments, IEEE Nucl. Sci. Symp. Conf. Rec. (2011).

  101. [101]

    X. Chen et al., PandaX-III: searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers, Sci. China Phys. Mech. Astron. 60 (2017) 061011 [arXiv:1610.08883] [INSPIRE].

    ADS  Article  Google Scholar 

  102. [102]

    J. Galán, REST v2.0: A data analysis and simulation framework for micro-patterned readout detectors, talk given at the 8th International Symposium on Large TPCs for Low-Energy Rare Event Detection, December 5–7, Paris, France (2016).

  103. [103]

    J. Castel et al., Background assessment for the TREX Dark Matter experiment, Eur. Phys. J. C 79 (2019) 782 [arXiv:1812.04519] [INSPIRE].

    ADS  Article  Google Scholar 

  104. [104]

    S. Cebrian et al., Radiopurity of MicrOMEGAs readout planes, Astropart. Phys. 34 (2011) 354 [arXiv:1005.2022] [INSPIRE].

    ADS  Article  Google Scholar 

  105. [105]

    F. Aznar et al., Assessment of material radiopurity for rare event experiments using MicrOMEGAs, 2013 JINST 8 C11012 [INSPIRE].

  106. [106]

    F.J. Iguaz et al., TREX-DM: a low-background MicrOMEGAs-based TPC for low-mass WIMP detection, Eur. Phys. J. C 76 (2016) 529 [arXiv:1512.01455] [INSPIRE].

    ADS  Article  Google Scholar 

  107. [107]

    I.G. Irastorza et al., Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay, JCAP 01 (2016) 033 [arXiv:1512.07926] [INSPIRE].

  108. [108]

    SuperNEMO collaboration, The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials, 2017 JINST 12 P06002 [arXiv:1702.07176] [INSPIRE].

  109. [109]

    C. Krieger, K. Desch, J. Kaminski and M. Lupberger, Operation of an InGrid based X-ray detector at the CAST experiment, EPJ Web Conf. 174 (2018) 02008 [INSPIRE].

    Article  Google Scholar 

  110. [110]

    CAST collaboration, Improved search for solar chameleons with a GridPix detector at CAST, JCAP 01 (2019) 032 [arXiv:1808.00066] [INSPIRE].

  111. [111]

    C. Pies et al., maXs: Microcalorimeter arrays for high-resolution x-ray spectroscopy at GSI/FAIR, J. Low Temp. Phys. 167 (2012) 269.

  112. [112]

    L. Gastaldo et al., The electron capture in 163Ho experiment — ECHo, Eur. Phys. J. ST 226 (2017) 1623 [INSPIRE].

    Article  Google Scholar 

  113. [113]

    S. Kempf, A. Fleischmann, L. Gastaldo and C. Enss, Physics and applications of metallic magnetic calorimeters, J. Low Temp. Phys. 193 (2018) 365.

    ADS  Article  Google Scholar 

  114. [114]

    E.E. Haller, Advanced far-infrared detectors, Infr. Phys. Technol. 35 (1994) 127.

    ADS  Article  Google Scholar 

  115. [115]

    S. Pirro and P. Mauskopf, Advances in bolometer technology for fundamental physics, Ann. Rev. Nucl. Part. Sci. 67 (2017) 161 [INSPIRE].

    ADS  Article  Google Scholar 

  116. [116]

    D. Poda and A. Giuliani, Low background techniques in bolometers for double-beta decay search, Int. J. Mod. Phys. A 32 (2017) 1743012 [arXiv:1711.01075] [INSPIRE].

    ADS  Article  Google Scholar 

  117. [117]

    CUPID collaboration, Final result of CUPID-0 phase-I in the search for the 82Se Neutrinoless Double-β Decay, Phys. Rev. Lett. 123 (2019) 032501 [arXiv:1906.05001] [INSPIRE].

  118. [118]

    E. Armengaud et al., The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects, Eur. Phys. J. C 80 (2020) 44 [arXiv:1909.02994] [INSPIRE].

    ADS  Article  Google Scholar 

  119. [119]

    E. Armengaud et al., Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search, Eur. Phys. J. C 77 (2017) 785 [arXiv:1704.01758] [INSPIRE].

    ADS  Article  Google Scholar 

  120. [120]

    T.B. Bekker et al., Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo, Astropart. Phys. 72 (2016) 38 [arXiv:1410.6933] [INSPIRE].

    ADS  Article  Google Scholar 

  121. [121]

    L. Bergé et al., Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by Neganov-Luke-magnified light detection, Phys. Rev. C 97 (2018) 032501 [arXiv:1710.03459] [INSPIRE].

    ADS  Article  Google Scholar 

  122. [122]

    J. Redondo, Axion Dark Matter searches @ IAXO, talk at Patras Workshop on Axions, WIMPs and WISPs, June 20–July 4, CERN, June (2014).

  123. [123]

    P. Sikivie, N. Sullivan and D.B. Tanner, Proposal for axion dark matter detection using an LC circuit, Phys. Rev. Lett. 112 (2014) 131301 [arXiv:1310.8545] [INSPIRE].

    ADS  Article  Google Scholar 

  124. [124]

    Y. Kahn, B.R. Safdi and J. Thaler, Broadband and resonant approaches to axion dark matter detection, Phys. Rev. Lett. 117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].

    ADS  Article  Google Scholar 

  125. [125]

    M. Silva-Feaver et al., Design overview of DM radio pathfinder experiment, IEEE Trans. Appl. Supercond. 27 (2017) 1400204 [arXiv:1610.09344] [INSPIRE].

    Article  Google Scholar 

  126. [126]

    A.A. Melcón et al., Axion searches with microwave filters: the RADES project, JCAP 05 (2018) 040 [arXiv:1803.01243] [INSPIRE].

    Article  Google Scholar 

  127. [127]

    The CAST collaboration, CAST — Status Report to the SPSC for the 127th Meeting and Planning for 2018, CERN-SPSC-2017-041 (2017).

  128. [128]

    O.K. Baker et al., Prospects for Searching Axion-like Particle Dark Matter with Dipole, Toroidal and Wiggler Magnets, Phys. Rev. D 85 (2012) 035018 [arXiv:1110.2180] [INSPIRE].

    ADS  Article  Google Scholar 

  129. [129]

    A. Álvarez Melcón et al., Scalable haloscopes for axion dark matter detection in the 30μeV range with RADES, JHEP 07 (2020) 084 [arXiv:2002.07639] [INSPIRE].

    ADS  Article  Google Scholar 

  130. [130]

    S. Arguedas Cuendis et al., The 3 cavity prototypes of RADES: an axion detector using microwave filters at CAST, Springer Proc. Phys. 245 (2020) 45 [arXiv:1903.04323] [INSPIRE].

    Article  Google Scholar 

  131. [131]

    CTA Consortium, MST team collaboration, Status of the Medium-Sized Telescope for the Cherenkov Telescope Array, PoS(ICRC2015)959 [arXiv:1509.01361] [INSPIRE].

  132. [132]

    R. Platzer, DESY, private communication.

  133. [133]

  134. [134]

  135. [135]

Download references

Author information




Corresponding author

Correspondence to I. G. Irastorza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.12076

IAXO Spokesperson. (I. G. Irastorza)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The IAXO collaboration., Abeln, A., Altenmüller, K. et al. Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory. J. High Energ. Phys. 2021, 137 (2021).

Download citation


  • Beyond Standard Model
  • Dark matter
  • CP violation
  • Other experiments