Skip to main content

Advertisement

SpringerLink
Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory
Download PDF
Download PDF
  • Regular Article - Experimental Physics
  • Open Access
  • Published: 17 May 2021

Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory

  • The IAXO collaboration,
  • A. Abeln1,
  • K. Altenmüller2,
  • S. Arguedas Cuendis3,
  • E. Armengaud4,
  • D. Attié4,
  • S. Aune4,
  • S. Basso5,
  • L. Bergé6,
  • B. Biasuzzi4,
  • P. T. C. Borges De Sousa3,
  • P. Brun4,
  • N. Bykovskiy3,
  • D. Calvet4,
  • J. M. Carmona2,
  • J. F. Castel2,
  • S. Cebrián2,
  • V. Chernov7,8,
  • F. E. Christensen9,
  • M. M. Civitani5,
  • C. Cogollos10,11,
  • T. Dafní2,
  • A. Derbin12,
  • K. Desch13,
  • D. Díez2,
  • M. Dinter21,
  • B. Döbrich3,
  • I. Drachnev12,
  • A. Dudarev3,
  • L. Dumoulin6,
  • D. D. M. Ferreira9,
  • E. Ferrer-Ribas4,
  • I. Fleck14,
  • J. Galán2,
  • D. Gascón10,11,
  • L. Gastaldo1,
  • M. Giannotti15,
  • Y. Giomataris4,
  • A. Giuliani6,
  • S. Gninenko8,
  • J. Golm3,16,
  • N. Golubev8,
  • L. Hagge21,
  • J. Hahn14,
  • C. J. Hailey17,
  • D. Hengstler1,
  • P. L. Henriksen9,
  • T. Houdy22,23,
  • R. Iglesias-Marzoa18,
  • F. J. Iguaz19,
  • I. G. Irastorza  ORCID: orcid.org/0000-0003-1163-16872,
  • C. Iñiguez18,
  • K. Jakovčić20,
  • J. Kaminski13,
  • B. Kanoute19,
  • S. Karstensen21,
  • L. Kravchuk8,
  • B. Lakić20,
  • T. Lasserre4,
  • P. Laurent4,
  • O. Limousin4,
  • A. Lindner21,
  • M. Loidl24,
  • I. Lomskaya12,
  • G. López-Alegre18,
  • B. Lubsandorzhiev8,
  • K. Ludwig21,
  • G. Luzón2,
  • C. Malbrunot3,
  • C. Margalejo2,
  • A. Marin-Franch18,
  • S. Marnieros6,
  • F. Marutzky21,
  • J. Mauricio10,11,
  • Y. Menesguen24,
  • M. Mentink3,
  • S. Mertens22,23,
  • F. Mescia10,11,
  • J. Miralda-Escudé10,25,
  • H. Mirallas2,
  • J. P. Mols4,
  • V. Muratova12,
  • X. F. Navick4,
  • C. Nones4,
  • A. Notari10,11,
  • A. Nozik7,8,
  • L. Obis2,
  • C. Oriol6,
  • F. Orsini19,
  • A. Ortiz de Solórzano2,
  • S. Oster21,
  • H. P. Pais Da Silva3,
  • V. Pantuev8,
  • T. Papaevangelou4,
  • G. Pareschi5,
  • K. Perez26,
  • O. Pérez2,
  • E. Picatoste10,11,
  • M. J. Pivovaroff27,28,
  • D. V. Poda6,
  • J. Redondo2,
  • A. Ringwald21,
  • M. Rodrigues24,
  • F. Rueda-Teruel18,
  • S. Rueda-Teruel18,
  • E. Ruiz-Choliz29,
  • J. Ruz27,
  • E. O. Saemann21,
  • J. Salvado10,11,
  • T. Schiffer13,
  • S. Schmidt13,
  • U. Schneekloth21,
  • M. Schott29,
  • L. Segui4,
  • F. Tavecchio5,
  • H. H. J. ten Kate3,
  • I. Tkachev8,
  • S. Troitsky8,
  • D. Unger1,
  • E. Unzhakov12,
  • N. Ushakov8,
  • J. K. Vogel27,
  • D. Voronin8,
  • A. Weltman30,
  • U. Werthenbach14,
  • W. Wuensch3 &
  • …
  • A. Yanes-Díaz18 

Journal of High Energy Physics volume 2021, Article number: 137 (2021) Cite this article

  • 422 Accesses

  • 22 Citations

  • 7 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produced in the Sun, with unprecedented sensitivity. BabyIAXO is conceived to test all IAXO subsystems (magnet, optics and detectors) at a relevant scale for the final system and thus serve as prototype for IAXO, but at the same time as a fully-fledged helioscope with relevant physics reach itself, and with potential for discovery. The BabyIAXO magnet will feature two 10 m long, 70 cm diameter bores, and will host two detection lines (optics and detector) of dimensions similar to the final ones foreseen for IAXO. BabyIAXO will detect or reject solar axions or ALPs with axion-photon couplings down to gaγ ∼ 1.5 × 10−11 GeV−1, and masses up to ma ∼ 0.25 eV. BabyIAXO will offer additional opportunities for axion research in view of IAXO, like the development of precision x-ray detectors to identify particular spectral features in the solar axion spectrum, and the implementation of radiofrequency-cavity-based axion dark matter setups.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

    Article  ADS  Google Scholar 

  2. R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  4. F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

    Article  ADS  Google Scholar 

  8. A.R. Zhitnitsky, On possible suppression of the axion hadron interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].

  9. I.G. Irastorza and J. Redondo, New experimental approaches in the search for axion-like particles, Prog. Part. Nucl. Phys. 102 (2018) 89 [arXiv:1801.08127] [INSPIRE].

    Article  ADS  Google Scholar 

  10. P. Sikivie, Experimental tests of the invisible axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [INSPIRE].

  11. K. Zioutas et al., A decommissioned LHC model magnet as an axion telescope, Nucl. Instrum. Meth. A 425 (1999) 480 [astro-ph/9801176] [INSPIRE].

  12. CAST collaboration, First results from the CERN Axion Solar Telescope (CAST), Phys. Rev. Lett. 94 (2005) 121301 [hep-ex/0411033] [INSPIRE].

  13. CAST collaboration, An improved limit on the axion-photon coupling from the CAST experiment, JCAP 04 (2007) 010 [hep-ex/0702006] [INSPIRE].

  14. CAST collaboration, Probing eV-scale axions with CAST, JCAP 02 (2009) 008 [arXiv:0810.4482] [INSPIRE].

  15. CAST collaboration, Search for solar axions by the CERN Axion Solar Telescope with 3He buffer gas: closing the hot dark matter gap, Phys. Rev. Lett. 112 (2014) 091302 [arXiv:1307.1985] [INSPIRE].

  16. CAST collaboration, New CAST limit on the axion-photon interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [INSPIRE].

  17. F. Aznar et al., A MicrOMEGAs-based low-background x-ray detector coupled to a slumped-glass telescope for axion research, JCAP 12 (2015) 008 [arXiv:1509.06190] [INSPIRE].

    Article  ADS  Google Scholar 

  18. I.G. Irastorza et al., Towards a new generation axion helioscope, JCAP 06 (2011) 013 [arXiv:1103.5334] [INSPIRE].

    Article  ADS  Google Scholar 

  19. J. Redondo, Solar axion flux from the axion-electron coupling, JCAP 12 (2013) 008 [arXiv:1310.0823] [INSPIRE].

    Article  ADS  Google Scholar 

  20. E. Armengaud et al., Conceptual design of the International Axion Observatory (IAXO), 2014 JINST 9 T05002 [arXiv:1401.3233] [INSPIRE].

  21. IAXO collaboration, Physics potential of the International Axion Observatory (IAXO), JCAP 06 (2019) 047 [arXiv:1904.09155] [INSPIRE].

  22. L. Di Luzio, F. Mescia and E. Nardi, Redefining the axion window, Phys. Rev. Lett. 118 (2017) 031801 [arXiv:1610.07593] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Giannotti, I.G. Irastorza, J. Redondo, A. Ringwald and K. Saikawa, Stellar recipes for axion hunters, JCAP 10 (2017) 010 [arXiv:1708.02111] [INSPIRE].

    Article  ADS  Google Scholar 

  24. L. Di Luzio, M. Giannotti, E. Nardi and L. Visinelli, The landscape of QCD axion models, Phys. Rept. 870 (2020) 1 [arXiv:2003.01100] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. A. De Angelis, G. Galanti and M. Roncadelli, Relevance of axion-like particles for very-high-energy astrophysics, Phys. Rev. D 84 (2011) 105030 [Erratum ibid. 87 (2013) 109903] [arXiv:1106.1132] [INSPIRE].

  26. D. Horns and M. Meyer, Indications for a pair-production anomaly from the propagation of VHE gamma-rays, JCAP 02 (2012) 033 [arXiv:1201.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  27. H.E.S.S. collaboration, A Low level of extragalactic background light as revealed by gamma-rays from blazars, Nature 440 (2006) 1018 [astro-ph/0508073] [INSPIRE].

  28. MAGIC collaboration, Very-high-energy gamma rays from a distant quasar: how transparent is the universe?, Science 320 (2008) 1752 [arXiv:0807.2822] [INSPIRE].

  29. MAGIC collaboration, Discovery of very high energy gamma-rays from the distant flat spectrum radio quasar 3C 279 with the MAGIC telescope, arXiv:0709.1475 [INSPIRE].

  30. M. Meyer, D. Horns and M. Raue, First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations, Phys. Rev. D 87 (2013) 035027 [arXiv:1302.1208] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Csáki, N. Kaloper, M. Peloso and J. Terning, Super GZK photons from photon axion mixing, JCAP 05 (2003) 005 [hep-ph/0302030] [INSPIRE].

  32. A. De Angelis, O. Mansutti, M. Persic and M. Roncadelli, Photon propagation and the VHE gamma-ray spectra of blazars: how transparent is really the Universe?, Mon. Not. Roy. Astron. Soc. 394 (2009) L21 [arXiv:0807.4246] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Roncadelli, A. De Angelis and O. Mansutti, Evidence for a new light boson from cosmological gamma-ray propagation?, AIP Conf. Proc. 1018 (2008) 147 [arXiv:0902.0895] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Simet, D. Hooper and P.D. Serpico, The Milky Way as a kiloparsec-scale axionscope, Phys. Rev. D 77 (2008) 063001 [arXiv:0712.2825] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M.A. Sanchez-Conde, D. Paneque, E. Bloom, F. Prada and A. Dominguez, Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources, Phys. Rev. D 79 (2009) 123511 [arXiv:0905.3270] [INSPIRE].

    Article  ADS  Google Scholar 

  36. A. Dominguez, M.A. Sanchez-Conde and F. Prada, Axion-like particle imprint in cosmological very-high-energy sources, JCAP 11 (2011) 020 [arXiv:1106.1860] [INSPIRE].

    Article  ADS  Google Scholar 

  37. G.I. Rubtsov and S.V. Troitsky, Breaks in gamma-ray spectra of distant blazars and transparency of the Universe, JETP Lett. 100 (2014) 355 [arXiv:1406.0239] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Kohri and H. Kodama, Axion-like particles and recent observations of the cosmic infrared background radiation, Phys. Rev. D 96 (2017) 051701 [arXiv:1704.05189] [INSPIRE].

    Article  ADS  Google Scholar 

  39. P. Di Vecchia, M. Giannotti, M. Lattanzi and A. Lindner, Round table on axions and axion-like particles, PoS Confinement2018 (2019) 034 [arXiv:1902.06567] [INSPIRE].

  40. J. Isern, E. Garcia-Berro, L.G. Althaus and A.H. Corsico, Axions and the pulsation periods of variable white dwarfs revisited, Astron. Astrophys. 512 (2010) A86 [arXiv:1001.5248] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A.H. Córsico et al., An asteroseismic constraint on the mass of the axion from the period drift of the pulsating DA white dwarf star L19-2, JCAP 07 (2016) 036 [arXiv:1605.06458] [INSPIRE].

    Article  ADS  Google Scholar 

  42. A.H. Corsico et al., The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass, Mon. Not. Roy. Astron. Soc. 424 (2012) 2792 [arXiv:1205.6180] [INSPIRE].

    Article  ADS  Google Scholar 

  43. A.H. Corsico et al., An independent limit on the axion mass from the variable white dwarf star R548, JCAP 12 (2012) 010 [arXiv:1211.3389] [INSPIRE].

    Article  ADS  Google Scholar 

  44. T. Battich, A.H. Córsico, L.G. Althaus, M.M. Miller Bertolami and M.M.M. Bertolami, First axion bounds from a pulsating helium-rich white dwarf star, JCAP 08 (2016) 062 [arXiv:1605.07668] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Isern, M. Hernanz and E. Garcia-Berro, Axion cooling of white dwarfs, Astrophys. J. Lett. 392 (1992) L23 [INSPIRE].

    Article  ADS  Google Scholar 

  46. J. Isern, E. Garcia-Berro, S. Torres and S. Catalan, Axions and the cooling of white dwarf stars, Astrophys. J. Lett. 682 (2008) L109 [arXiv:0806.2807] [INSPIRE].

    Article  ADS  Google Scholar 

  47. M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, JCAP 10 (2014) 069 [arXiv:1406.7712] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Capozzi and G. Raffelt, Axion and neutrino bounds improved with new calibrations of the tip of the red-giant branch using geometric distance determinations, Phys. Rev. D 102 (2020) 083007 [arXiv:2007.03694] [INSPIRE].

    Article  ADS  Google Scholar 

  49. N. Viaux et al., Particle-physics constraints from the globular cluster M5: neutrino dipole moments, Astron. Astrophys. 558 (2013) A12 [arXiv:1308.4627] [INSPIRE].

    Article  Google Scholar 

  50. N. Viaux et al., Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett. 111 (2013) 231301 [arXiv:1311.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  51. O. Straniero et al., The RGB tip of galactic globular clusters and the revision of the axion-electron coupling bound, Astron. Astrophys. 644 (2020) A166 [arXiv:2010.03833] [INSPIRE].

    Article  Google Scholar 

  52. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 (2014) 191302 [arXiv:1406.6053] [INSPIRE].

    Article  ADS  Google Scholar 

  53. O. Straniero et al., Axion-photon coupling: astrophysical constraints, in the proceedings of the 11th Patras Workshop on Axions, WIMPs and WISPs (Axion-WIMP 2015), June 22–26, Zaragoza, Spain (2015), [INSPIRE].

  54. R.C.D.-P.E.D. Skillman, The ratio of blue to red supergiants in sextans a from HST imaging, astro-ph/0203284 [INSPIRE].

  55. K.B.W. McQuinn et al., Observational constraints on red and blue helium burning sequences, Astrophys. J. 740 (2011) 48 [arXiv:1108.1405] [INSPIRE].

    Article  ADS  Google Scholar 

  56. W.C.G. Ho and C.O. Heinke, A neutron star with a carbon atmosphere in the Cassiopeia A supernova remnant, Nature 462 (2009) 71 [arXiv:0911.0672] [INSPIRE].

    Article  ADS  Google Scholar 

  57. C.O. Heinke and W.C.G. Ho, Direct observation of the cooling of the Cassiopeia A neutron star, Astrophys. J. Lett. 719 (2010) L167 [arXiv:1007.4719] [INSPIRE].

    Article  ADS  Google Scholar 

  58. P.S. Shternin, D.G. Yakovlev, C.O. Heinke, W.C.G. Ho and D.J. Patnaude, Cooling neutron star in the Cassiopeia A supernova remnant: evidence for superfluidity in the core, Mon. Not. Roy. Astron. Soc. 412 (2011) L108 [arXiv:1012.0045] [INSPIRE].

    Article  ADS  Google Scholar 

  59. M. Giannotti, I. Irastorza, J. Redondo and A. Ringwald, Cool WISPs for stellar cooling excesses, JCAP 05 (2016) 057 [arXiv:1512.08108] [INSPIRE].

    Article  ADS  Google Scholar 

  60. M. Gorghetto, E. Hardy and G. Villadoro, Axions from strings: the attractive solution, JHEP 07 (2018) 151 [arXiv:1806.04677] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. M. Gorghetto, E. Hardy and G. Villadoro, More axions from strings, SciPost Phys. 10 (2021) 050 [arXiv:2007.04990] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. A. Ringwald and K. Saikawa, Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario, Phys. Rev. D 93 (2016) 085031 [Addendum ibid. 94 (2016) 049908] [arXiv:1512.06436] [INSPIRE].

  63. P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy cold dark matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [INSPIRE].

    Article  ADS  Google Scholar 

  64. J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megaHertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].

    Article  ADS  Google Scholar 

  65. N. Houston, C. Li, T. Li, Q. Yang and X. Zhang, Natural explanation for 21 cm absorption signals via axion-induced cooling, Phys. Rev. Lett. 121 (2018) 111301 [arXiv:1805.04426] [INSPIRE].

    Article  ADS  Google Scholar 

  66. C. Li, N. Houston, T. Li, Q. Yang and X. Zhang, A detailed exploration of the EDGES 21cm absorption anomaly and axion-induced cooling, Int. J. Mod. Phys. D 30 (2021) 2150041 [arXiv:1812.03931] [INSPIRE].

    Article  ADS  Google Scholar 

  67. J.L. Bernal, L. Verde and A.G. Riess, The trouble with H0, JCAP 10 (2016) 019 [arXiv:1607.05617] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M.S. Turner, Thermal production of not so invisible axions in the early Universe, Phys. Rev. Lett. 59 (1987) 2489 [Erratum ibid. 60 (1988) 1101] [INSPIRE].

  69. CMB-S4 collaboration, CMB-S4 science book, first edition, arXiv:1610.02743 [INSPIRE].

  70. SPT-3G collaboration, SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole Telescope, Proc. SPIE Int. Soc. Opt. Eng. 9153 (2014) 91531P [arXiv:1407.2973] [INSPIRE].

  71. R.Z. Ferreira and A. Notari, Observable windows for the QCD axion through the number of relativistic species, Phys. Rev. Lett. 120 (2018) 191301 [arXiv:1801.06090] [INSPIRE].

    Article  ADS  Google Scholar 

  72. F. D’Eramo, R.Z. Ferreira, A. Notari and J.L. Bernal, Hot axions and the H0 tension, JCAP 11 (2018) 014 [arXiv:1808.07430] [INSPIRE].

    Article  ADS  Google Scholar 

  73. R. Daido, F. Takahashi and W. Yin, The ALP miracle revisited, JHEP 02 (2018) 104 [arXiv:1710.11107] [INSPIRE].

    Article  ADS  Google Scholar 

  74. R. Daido, F. Takahashi and W. Yin, The ALP miracle: unified inflaton and dark matter, JCAP 05 (2017) 044 [arXiv:1702.03284] [INSPIRE].

    Article  ADS  Google Scholar 

  75. R.T. Co, L.J. Hall and K. Harigaya, Predictions for axion couplings from ALP cogenesis, JHEP 01 (2021) 172 [arXiv:2006.04809] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. T. Dafni et al., Weighing the solar axion, Phys. Rev. D 99 (2019) 035037 [arXiv:1811.09290] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Jaeckel and L.J. Thormaehlen, Distinguishing axion models with IAXO, JCAP 03 (2019) 039 [arXiv:1811.09278] [INSPIRE].

    Article  ADS  Google Scholar 

  78. Y. Giomataris, P. Rebourgeard, J.P. Robert and G. Charpak, MicrOMEGAs: a high granularity position sensitive gaseous detector for high particle flux environments, Nucl. Instrum. Meth. A 376 (1996) 29 [INSPIRE].

    Article  ADS  Google Scholar 

  79. S. Andriamonje et al., Development and performance of Microbulk MicrOMEGAs detectors, 2010 JINST 5 P02001 [INSPIRE].

  80. P. Abbon et al., The MicrOMEGAs detector of the CAST experiment, New J. Phys. 9 (2007) 170 [physics/0702190] [INSPIRE].

  81. C. Krieger, K. Desch, J. Kaminski, M. Lupberger and T. Vafeiadis, An InGrid based low energy x-ray detector for the CAST experiment, PoS(TIPP2014)060 [INSPIRE].

  82. S. Mertens et al., Sensitivity of next-generation tritium beta-decay experiments for keV-scale sterile neutrinos, JCAP 02 (2015) 020 [arXiv:1409.0920].

    Article  ADS  Google Scholar 

  83. S. Mertens et al., A novel detector system for KATRIN to search for keV-scale sterile neutrinos, J. Phys. G 46 (2019) 065203.

    Article  ADS  Google Scholar 

  84. A. Fleischmann et al., Metallic magnetic calorimeters, AIP Conf. Proc. 1185 (2009) 571.

    Article  ADS  Google Scholar 

  85. L. Ravera et al., The X-ray Integral Field Unit (X-IFU) for Athena, SPIE Proc. (2014) 91442L.

  86. B. Cabrera, Introduction to TES physics, J. Low Temp. Phys. 151 (2008) 82.

    Article  ADS  Google Scholar 

  87. F.A. Harrison et al., The Nuclear Spectroscopic Telescope Array (NuSTAR) High-Energy X-Ray Mission, Astrophys. J. 770 (2013) 103 [arXiv:1301.7307] [INSPIRE].

    Article  ADS  Google Scholar 

  88. T. Okajima et al., Characterization of the supermirror hard-x-ray telescope for the infocus balloon experiment, Appl. Opt. 41 (2002) 5417.

    Article  ADS  Google Scholar 

  89. T. Takahashi et al., Hitomi (ASTRO-H) X-ray Astronomy Satellite, J. Astron. Telesc. Instrum. Syst. 4 (2018) 021402.

    Article  ADS  Google Scholar 

  90. T. Okajima, P.J. Serlemitsos, Y. Soong and D.J. Hahne, First measurement of the ASTRO-H soft x-ray telescope performance, SPIE Proc. 8443 (2012) 572.

    Google Scholar 

  91. T. Okajima et al., Performance of NICER flight X-ray concentrator, SPIE Proc. 9905 (2016) 99054X.

    Article  Google Scholar 

  92. H. Wolter, Spiegelsysteme streifenden einfalls als abbildende optiken für röntgenstrahlen, Ann. Phys. 10 (1952) 94.

    Article  MATH  Google Scholar 

  93. M. Civitani et al., Cold and Hot Slumped Glass Optics with interfacing ribs for high angular resolution x-ray telescopes, SPIE Proc. 9905 (2016) 99056U.

    Article  Google Scholar 

  94. F. Jansen et al., XMM-Newton observatory. I. The spacecraft and operations., Astron. Astrophys. 365 (2001) L1 [INSPIRE].

  95. S. Aune et al., Low background x-ray detection with MicrOMEGAs for axion research, 2014 JINST 9 P01001 [arXiv:1310.3391] [INSPIRE].

  96. C. Margalejo, Modelo de fondo para IAXO-D0, prototipo del experimento IAXO, Master Thesis, Universidad de Zaragoza, Zaragoza, Spain (2019).

  97. I.G. Irastorza et al., Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter, JCAP 01 (2016) 034 [Erratum ibid. 05 (2016) E01] [arXiv:1512.06294] [INSPIRE].

  98. P. Baron et al., Operational experience with the readout system of the MINOS vertex tracker, IEEE Trans. Nucl. Sci. 64 (2017) 1494.

    Article  ADS  Google Scholar 

  99. E. Ruiz-Choliz, Desarrollo de detectores gaseosos con plano de lectura pixelado (Micromegas) para la detección y caracterización de partículas subátomicas: Los detectores de Rayos X del experimento IAXO, Ph.D. thesis, Universidad de Zaragoza, Zaragoza, Spain (2019).

  100. S. Anvar et al., Aget, the get front-end asic, for the readout of the time projection chambers used in nuclear physic experiments, IEEE Nucl. Sci. Symp. Conf. Rec. (2011).

  101. X. Chen et al., PandaX-III: searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers, Sci. China Phys. Mech. Astron. 60 (2017) 061011 [arXiv:1610.08883] [INSPIRE].

    Article  ADS  Google Scholar 

  102. J. Galán, REST v2.0: A data analysis and simulation framework for micro-patterned readout detectors, talk given at the 8th International Symposium on Large TPCs for Low-Energy Rare Event Detection, December 5–7, Paris, France (2016).

  103. J. Castel et al., Background assessment for the TREX Dark Matter experiment, Eur. Phys. J. C 79 (2019) 782 [arXiv:1812.04519] [INSPIRE].

    Article  ADS  Google Scholar 

  104. S. Cebrian et al., Radiopurity of MicrOMEGAs readout planes, Astropart. Phys. 34 (2011) 354 [arXiv:1005.2022] [INSPIRE].

    Article  ADS  Google Scholar 

  105. F. Aznar et al., Assessment of material radiopurity for rare event experiments using MicrOMEGAs, 2013 JINST 8 C11012 [INSPIRE].

  106. F.J. Iguaz et al., TREX-DM: a low-background MicrOMEGAs-based TPC for low-mass WIMP detection, Eur. Phys. J. C 76 (2016) 529 [arXiv:1512.01455] [INSPIRE].

    Article  ADS  Google Scholar 

  107. I.G. Irastorza et al., Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay, JCAP 01 (2016) 033 [arXiv:1512.07926] [INSPIRE].

  108. SuperNEMO collaboration, The BiPo-3 detector for the measurement of ultra low natural radioactivities of thin materials, 2017 JINST 12 P06002 [arXiv:1702.07176] [INSPIRE].

  109. C. Krieger, K. Desch, J. Kaminski and M. Lupberger, Operation of an InGrid based X-ray detector at the CAST experiment, EPJ Web Conf. 174 (2018) 02008 [INSPIRE].

    Article  Google Scholar 

  110. CAST collaboration, Improved search for solar chameleons with a GridPix detector at CAST, JCAP 01 (2019) 032 [arXiv:1808.00066] [INSPIRE].

  111. C. Pies et al., maXs: Microcalorimeter arrays for high-resolution x-ray spectroscopy at GSI/FAIR, J. Low Temp. Phys. 167 (2012) 269.

  112. L. Gastaldo et al., The electron capture in 163Ho experiment — ECHo, Eur. Phys. J. ST 226 (2017) 1623 [INSPIRE].

    Article  Google Scholar 

  113. S. Kempf, A. Fleischmann, L. Gastaldo and C. Enss, Physics and applications of metallic magnetic calorimeters, J. Low Temp. Phys. 193 (2018) 365.

    Article  ADS  Google Scholar 

  114. E.E. Haller, Advanced far-infrared detectors, Infr. Phys. Technol. 35 (1994) 127.

    Article  ADS  Google Scholar 

  115. S. Pirro and P. Mauskopf, Advances in bolometer technology for fundamental physics, Ann. Rev. Nucl. Part. Sci. 67 (2017) 161 [INSPIRE].

    Article  ADS  Google Scholar 

  116. D. Poda and A. Giuliani, Low background techniques in bolometers for double-beta decay search, Int. J. Mod. Phys. A 32 (2017) 1743012 [arXiv:1711.01075] [INSPIRE].

    Article  ADS  Google Scholar 

  117. CUPID collaboration, Final result of CUPID-0 phase-I in the search for the 82Se Neutrinoless Double-β Decay, Phys. Rev. Lett. 123 (2019) 032501 [arXiv:1906.05001] [INSPIRE].

  118. E. Armengaud et al., The CUPID-Mo experiment for neutrinoless double-beta decay: performance and prospects, Eur. Phys. J. C 80 (2020) 44 [arXiv:1909.02994] [INSPIRE].

    Article  ADS  Google Scholar 

  119. E. Armengaud et al., Development of 100Mo-containing scintillating bolometers for a high-sensitivity neutrinoless double-beta decay search, Eur. Phys. J. C 77 (2017) 785 [arXiv:1704.01758] [INSPIRE].

    Article  ADS  Google Scholar 

  120. T.B. Bekker et al., Aboveground test of an advanced Li2MoO4 scintillating bolometer to search for neutrinoless double beta decay of 100Mo, Astropart. Phys. 72 (2016) 38 [arXiv:1410.6933] [INSPIRE].

    Article  ADS  Google Scholar 

  121. L. Bergé et al., Complete event-by-event α/γ(β) separation in a full-size TeO2 CUORE bolometer by Neganov-Luke-magnified light detection, Phys. Rev. C 97 (2018) 032501 [arXiv:1710.03459] [INSPIRE].

    Article  ADS  Google Scholar 

  122. J. Redondo, Axion Dark Matter searches @ IAXO, talk at http://axion-wimp2014.desy.de/10th Patras Workshop on Axions, WIMPs and WISPs, June 20–July 4, CERN, June (2014).

  123. P. Sikivie, N. Sullivan and D.B. Tanner, Proposal for axion dark matter detection using an LC circuit, Phys. Rev. Lett. 112 (2014) 131301 [arXiv:1310.8545] [INSPIRE].

    Article  ADS  Google Scholar 

  124. Y. Kahn, B.R. Safdi and J. Thaler, Broadband and resonant approaches to axion dark matter detection, Phys. Rev. Lett. 117 (2016) 141801 [arXiv:1602.01086] [INSPIRE].

    Article  ADS  Google Scholar 

  125. M. Silva-Feaver et al., Design overview of DM radio pathfinder experiment, IEEE Trans. Appl. Supercond. 27 (2017) 1400204 [arXiv:1610.09344] [INSPIRE].

    Article  Google Scholar 

  126. A.A. Melcón et al., Axion searches with microwave filters: the RADES project, JCAP 05 (2018) 040 [arXiv:1803.01243] [INSPIRE].

    Article  Google Scholar 

  127. The CAST collaboration, CAST — Status Report to the SPSC for the 127th Meeting and Planning for 2018, CERN-SPSC-2017-041 (2017).

  128. O.K. Baker et al., Prospects for Searching Axion-like Particle Dark Matter with Dipole, Toroidal and Wiggler Magnets, Phys. Rev. D 85 (2012) 035018 [arXiv:1110.2180] [INSPIRE].

    Article  ADS  Google Scholar 

  129. A. Álvarez Melcón et al., Scalable haloscopes for axion dark matter detection in the 30μeV range with RADES, JHEP 07 (2020) 084 [arXiv:2002.07639] [INSPIRE].

    Article  ADS  Google Scholar 

  130. S. Arguedas Cuendis et al., The 3 cavity prototypes of RADES: an axion detector using microwave filters at CAST, Springer Proc. Phys. 245 (2020) 45 [arXiv:1903.04323] [INSPIRE].

    Article  Google Scholar 

  131. CTA Consortium, MST team collaboration, Status of the Medium-Sized Telescope for the Cherenkov Telescope Array, PoS(ICRC2015)959 [arXiv:1509.01361] [INSPIRE].

  132. R. Platzer, DESY, private communication.

  133. https://doocs-web.desy.de/index.html

  134. https://github.com/mipt-npm/dataforge-control

  135. https://github.com/waltz-controls/rfc

Download references

Author information

Authors and Affiliations

  1. Heidelberg University, Kirchhoff Institute for Physics, Heidelberg, Germany

    A. Abeln, L. Gastaldo, D. Hengstler & D. Unger

  2. Center for Astroparticles and High Energy Physics (CAPA), Universidad de Zaragoza, 50009, Zaragoza, Spain

    K. Altenmüller, J. M. Carmona, J. F. Castel, S. Cebrián, T. Dafní, D. Díez, J. Galán, I. G. Irastorza, G. Luzón, C. Margalejo, H. Mirallas, L. Obis, A. Ortiz de Solórzano, O. Pérez & J. Redondo

  3. CERN — European Organization for Nuclear Research, Geneva, Switzerland

    S. Arguedas Cuendis, P. T. C. Borges De Sousa, N. Bykovskiy, B. Döbrich, A. Dudarev, J. Golm, C. Malbrunot, M. Mentink, H. P. Pais Da Silva, H. H. J. ten Kate & W. Wuensch

  4. IRFU, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

    E. Armengaud, D. Attié, S. Aune, B. Biasuzzi, P. Brun, D. Calvet, E. Ferrer-Ribas, Y. Giomataris, T. Lasserre, P. Laurent, O. Limousin, J. P. Mols, X. F. Navick, C. Nones, T. Papaevangelou & L. Segui

  5. INAF, Italian National Institute for Astrophysics, Osservatorio Astronomico di Brera, Milano/Merate, Italy

    S. Basso, M. M. Civitani, G. Pareschi & F. Tavecchio

  6. Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France

    L. Bergé, L. Dumoulin, A. Giuliani, S. Marnieros, C. Oriol & D. V. Poda

  7. Moscow Institute of Physics and Technology, Moscow, Russia

    V. Chernov & A. Nozik

  8. Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7A, 117312, Moscow, Russia

    V. Chernov, S. Gninenko, N. Golubev, L. Kravchuk, B. Lubsandorzhiev, A. Nozik, V. Pantuev, I. Tkachev, S. Troitsky, N. Ushakov & D. Voronin

  9. Technical University of Denmark, DTU Space Kgs., Lyngby, Denmark

    F. E. Christensen, D. D. M. Ferreira & P. L. Henriksen

  10. Institut de Ciències del Cosmos, Universitat de Barcelona, Barcelona, Spain

    C. Cogollos, D. Gascón, J. Mauricio, F. Mescia, J. Miralda-Escudé, A. Notari, E. Picatoste & J. Salvado

  11. Departament de Física Quàntica i Astrofísica, Universitat de Barcelona, Barcelona, Spain

    C. Cogollos, D. Gascón, J. Mauricio, F. Mescia, A. Notari, E. Picatoste & J. Salvado

  12. Petersburg Nuclear Physics Institute - NRC Kurchatov Institute, Gatchina, 188300, Russia

    A. Derbin, I. Drachnev, I. Lomskaya, V. Muratova & E. Unzhakov

  13. Physikalisches Institut der Universität Bonn, Nussallee 12, 53115, Bonn, Germany

    K. Desch, J. Kaminski, T. Schiffer & S. Schmidt

  14. Center for Particle Physics Siegen, Siegen University, Siegen, Germany

    I. Fleck, J. Hahn & U. Werthenbach

  15. Physical Sciences, Barry University, 11300 NE 2nd Ave., Miami Shores, FL, 33161, U.S.A.

    M. Giannotti

  16. Institute for Optics and Quantum Electronics, Friedrich Schiller University Jena, Jena, Germany

    J. Golm

  17. Columbia Astrophysics Laboratory, New York, U.S.A.

    C. J. Hailey

  18. Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan, Teruel, Spain

    R. Iglesias-Marzoa, C. Iñiguez, G. López-Alegre, A. Marin-Franch, F. Rueda-Teruel, S. Rueda-Teruel & A. Yanes-Díaz

  19. Synchrotron SOLEIL, 91192, Gif-sur-Yvette, France

    F. J. Iguaz, B. Kanoute & F. Orsini

  20. Rudjer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia

    K. Jakovčić & B. Lakić

  21. Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany

    M. Dinter, L. Hagge, S. Karstensen, A. Lindner, K. Ludwig, F. Marutzky, S. Oster, A. Ringwald, E. O. Saemann & U. Schneekloth

  22. Max-Planck-Institut für Physik, Föhringer Ring 6, 80805, München, Germany

    T. Houdy & S. Mertens

  23. Technische Universität München, James-Franck-Str. 1, 85748, Garching, Germany

    T. Houdy & S. Mertens

  24. CEA, LIST, Laboratoire National Henri Becquerel (LNE-LNHB), F-91191, Gif-sur-Yvette, France

    M. Loidl, Y. Menesguen & M. Rodrigues

  25. ICREA, Barcelona, Spain

    J. Miralda-Escudé

  26. Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, 02139, U.S.A.

    K. Perez

  27. Lawrence Livermore National Laboratory, Livermore, CA, U.S.A.

    M. J. Pivovaroff, J. Ruz & J. K. Vogel

  28. SLAC National Accelerator Laboratory, Menlo Park, CA, U.S.A.

    M. J. Pivovaroff

  29. Johannes Gutenberg University, Mainz, Germany

    E. Ruiz-Choliz & M. Schott

  30. High Energy Physics, Cosmology & Astrophysics Theory (HEPCAT) group, University of Cape Town, Private Bag, Rondebosch, 7700, South Africa

    A. Weltman

Authors
  1. A. Abeln
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. Altenmüller
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. S. Arguedas Cuendis
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. E. Armengaud
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. D. Attié
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. S. Aune
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. S. Basso
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. L. Bergé
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. B. Biasuzzi
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. P. T. C. Borges De Sousa
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. P. Brun
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. N. Bykovskiy
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. D. Calvet
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. J. M. Carmona
    View author publications

    You can also search for this author in PubMed Google Scholar

  15. J. F. Castel
    View author publications

    You can also search for this author in PubMed Google Scholar

  16. S. Cebrián
    View author publications

    You can also search for this author in PubMed Google Scholar

  17. V. Chernov
    View author publications

    You can also search for this author in PubMed Google Scholar

  18. F. E. Christensen
    View author publications

    You can also search for this author in PubMed Google Scholar

  19. M. M. Civitani
    View author publications

    You can also search for this author in PubMed Google Scholar

  20. C. Cogollos
    View author publications

    You can also search for this author in PubMed Google Scholar

  21. T. Dafní
    View author publications

    You can also search for this author in PubMed Google Scholar

  22. A. Derbin
    View author publications

    You can also search for this author in PubMed Google Scholar

  23. K. Desch
    View author publications

    You can also search for this author in PubMed Google Scholar

  24. D. Díez
    View author publications

    You can also search for this author in PubMed Google Scholar

  25. M. Dinter
    View author publications

    You can also search for this author in PubMed Google Scholar

  26. B. Döbrich
    View author publications

    You can also search for this author in PubMed Google Scholar

  27. I. Drachnev
    View author publications

    You can also search for this author in PubMed Google Scholar

  28. A. Dudarev
    View author publications

    You can also search for this author in PubMed Google Scholar

  29. L. Dumoulin
    View author publications

    You can also search for this author in PubMed Google Scholar

  30. D. D. M. Ferreira
    View author publications

    You can also search for this author in PubMed Google Scholar

  31. E. Ferrer-Ribas
    View author publications

    You can also search for this author in PubMed Google Scholar

  32. I. Fleck
    View author publications

    You can also search for this author in PubMed Google Scholar

  33. J. Galán
    View author publications

    You can also search for this author in PubMed Google Scholar

  34. D. Gascón
    View author publications

    You can also search for this author in PubMed Google Scholar

  35. L. Gastaldo
    View author publications

    You can also search for this author in PubMed Google Scholar

  36. M. Giannotti
    View author publications

    You can also search for this author in PubMed Google Scholar

  37. Y. Giomataris
    View author publications

    You can also search for this author in PubMed Google Scholar

  38. A. Giuliani
    View author publications

    You can also search for this author in PubMed Google Scholar

  39. S. Gninenko
    View author publications

    You can also search for this author in PubMed Google Scholar

  40. J. Golm
    View author publications

    You can also search for this author in PubMed Google Scholar

  41. N. Golubev
    View author publications

    You can also search for this author in PubMed Google Scholar

  42. L. Hagge
    View author publications

    You can also search for this author in PubMed Google Scholar

  43. J. Hahn
    View author publications

    You can also search for this author in PubMed Google Scholar

  44. C. J. Hailey
    View author publications

    You can also search for this author in PubMed Google Scholar

  45. D. Hengstler
    View author publications

    You can also search for this author in PubMed Google Scholar

  46. P. L. Henriksen
    View author publications

    You can also search for this author in PubMed Google Scholar

  47. T. Houdy
    View author publications

    You can also search for this author in PubMed Google Scholar

  48. R. Iglesias-Marzoa
    View author publications

    You can also search for this author in PubMed Google Scholar

  49. F. J. Iguaz
    View author publications

    You can also search for this author in PubMed Google Scholar

  50. I. G. Irastorza
    View author publications

    You can also search for this author in PubMed Google Scholar

  51. C. Iñiguez
    View author publications

    You can also search for this author in PubMed Google Scholar

  52. K. Jakovčić
    View author publications

    You can also search for this author in PubMed Google Scholar

  53. J. Kaminski
    View author publications

    You can also search for this author in PubMed Google Scholar

  54. B. Kanoute
    View author publications

    You can also search for this author in PubMed Google Scholar

  55. S. Karstensen
    View author publications

    You can also search for this author in PubMed Google Scholar

  56. L. Kravchuk
    View author publications

    You can also search for this author in PubMed Google Scholar

  57. B. Lakić
    View author publications

    You can also search for this author in PubMed Google Scholar

  58. T. Lasserre
    View author publications

    You can also search for this author in PubMed Google Scholar

  59. P. Laurent
    View author publications

    You can also search for this author in PubMed Google Scholar

  60. O. Limousin
    View author publications

    You can also search for this author in PubMed Google Scholar

  61. A. Lindner
    View author publications

    You can also search for this author in PubMed Google Scholar

  62. M. Loidl
    View author publications

    You can also search for this author in PubMed Google Scholar

  63. I. Lomskaya
    View author publications

    You can also search for this author in PubMed Google Scholar

  64. G. López-Alegre
    View author publications

    You can also search for this author in PubMed Google Scholar

  65. B. Lubsandorzhiev
    View author publications

    You can also search for this author in PubMed Google Scholar

  66. K. Ludwig
    View author publications

    You can also search for this author in PubMed Google Scholar

  67. G. Luzón
    View author publications

    You can also search for this author in PubMed Google Scholar

  68. C. Malbrunot
    View author publications

    You can also search for this author in PubMed Google Scholar

  69. C. Margalejo
    View author publications

    You can also search for this author in PubMed Google Scholar

  70. A. Marin-Franch
    View author publications

    You can also search for this author in PubMed Google Scholar

  71. S. Marnieros
    View author publications

    You can also search for this author in PubMed Google Scholar

  72. F. Marutzky
    View author publications

    You can also search for this author in PubMed Google Scholar

  73. J. Mauricio
    View author publications

    You can also search for this author in PubMed Google Scholar

  74. Y. Menesguen
    View author publications

    You can also search for this author in PubMed Google Scholar

  75. M. Mentink
    View author publications

    You can also search for this author in PubMed Google Scholar

  76. S. Mertens
    View author publications

    You can also search for this author in PubMed Google Scholar

  77. F. Mescia
    View author publications

    You can also search for this author in PubMed Google Scholar

  78. J. Miralda-Escudé
    View author publications

    You can also search for this author in PubMed Google Scholar

  79. H. Mirallas
    View author publications

    You can also search for this author in PubMed Google Scholar

  80. J. P. Mols
    View author publications

    You can also search for this author in PubMed Google Scholar

  81. V. Muratova
    View author publications

    You can also search for this author in PubMed Google Scholar

  82. X. F. Navick
    View author publications

    You can also search for this author in PubMed Google Scholar

  83. C. Nones
    View author publications

    You can also search for this author in PubMed Google Scholar

  84. A. Notari
    View author publications

    You can also search for this author in PubMed Google Scholar

  85. A. Nozik
    View author publications

    You can also search for this author in PubMed Google Scholar

  86. L. Obis
    View author publications

    You can also search for this author in PubMed Google Scholar

  87. C. Oriol
    View author publications

    You can also search for this author in PubMed Google Scholar

  88. F. Orsini
    View author publications

    You can also search for this author in PubMed Google Scholar

  89. A. Ortiz de Solórzano
    View author publications

    You can also search for this author in PubMed Google Scholar

  90. S. Oster
    View author publications

    You can also search for this author in PubMed Google Scholar

  91. H. P. Pais Da Silva
    View author publications

    You can also search for this author in PubMed Google Scholar

  92. V. Pantuev
    View author publications

    You can also search for this author in PubMed Google Scholar

  93. T. Papaevangelou
    View author publications

    You can also search for this author in PubMed Google Scholar

  94. G. Pareschi
    View author publications

    You can also search for this author in PubMed Google Scholar

  95. K. Perez
    View author publications

    You can also search for this author in PubMed Google Scholar

  96. O. Pérez
    View author publications

    You can also search for this author in PubMed Google Scholar

  97. E. Picatoste
    View author publications

    You can also search for this author in PubMed Google Scholar

  98. M. J. Pivovaroff
    View author publications

    You can also search for this author in PubMed Google Scholar

  99. D. V. Poda
    View author publications

    You can also search for this author in PubMed Google Scholar

  100. J. Redondo
    View author publications

    You can also search for this author in PubMed Google Scholar

  101. A. Ringwald
    View author publications

    You can also search for this author in PubMed Google Scholar

  102. M. Rodrigues
    View author publications

    You can also search for this author in PubMed Google Scholar

  103. F. Rueda-Teruel
    View author publications

    You can also search for this author in PubMed Google Scholar

  104. S. Rueda-Teruel
    View author publications

    You can also search for this author in PubMed Google Scholar

  105. E. Ruiz-Choliz
    View author publications

    You can also search for this author in PubMed Google Scholar

  106. J. Ruz
    View author publications

    You can also search for this author in PubMed Google Scholar

  107. E. O. Saemann
    View author publications

    You can also search for this author in PubMed Google Scholar

  108. J. Salvado
    View author publications

    You can also search for this author in PubMed Google Scholar

  109. T. Schiffer
    View author publications

    You can also search for this author in PubMed Google Scholar

  110. S. Schmidt
    View author publications

    You can also search for this author in PubMed Google Scholar

  111. U. Schneekloth
    View author publications

    You can also search for this author in PubMed Google Scholar

  112. M. Schott
    View author publications

    You can also search for this author in PubMed Google Scholar

  113. L. Segui
    View author publications

    You can also search for this author in PubMed Google Scholar

  114. F. Tavecchio
    View author publications

    You can also search for this author in PubMed Google Scholar

  115. H. H. J. ten Kate
    View author publications

    You can also search for this author in PubMed Google Scholar

  116. I. Tkachev
    View author publications

    You can also search for this author in PubMed Google Scholar

  117. S. Troitsky
    View author publications

    You can also search for this author in PubMed Google Scholar

  118. D. Unger
    View author publications

    You can also search for this author in PubMed Google Scholar

  119. E. Unzhakov
    View author publications

    You can also search for this author in PubMed Google Scholar

  120. N. Ushakov
    View author publications

    You can also search for this author in PubMed Google Scholar

  121. J. K. Vogel
    View author publications

    You can also search for this author in PubMed Google Scholar

  122. D. Voronin
    View author publications

    You can also search for this author in PubMed Google Scholar

  123. A. Weltman
    View author publications

    You can also search for this author in PubMed Google Scholar

  124. U. Werthenbach
    View author publications

    You can also search for this author in PubMed Google Scholar

  125. W. Wuensch
    View author publications

    You can also search for this author in PubMed Google Scholar

  126. A. Yanes-Díaz
    View author publications

    You can also search for this author in PubMed Google Scholar

Consortia

The IAXO collaboration

Corresponding author

Correspondence to I. G. Irastorza.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.12076

IAXO Spokesperson. (I. G. Irastorza)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

The IAXO collaboration., Abeln, A., Altenmüller, K. et al. Conceptual design of BabyIAXO, the intermediate stage towards the International Axion Observatory. J. High Energ. Phys. 2021, 137 (2021). https://doi.org/10.1007/JHEP05(2021)137

Download citation

  • Received: 26 October 2020

  • Revised: 05 March 2021

  • Accepted: 16 April 2021

  • Published: 17 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)137

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Dark matter
  • CP violation
  • Other experiments
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.