Abstract
We explicitly construct a class of holographic quantum error correction codes with non-trivial centers in the code subalgebra. Specifically, we use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing), which we call the holographic hybrid code. This code admits a local log-depth encoding/decoding circuit, and can be represented as a holographic tensor network which satisfies an analog of the Ryu-Takayanagi formula and reproduces features of the sub-region duality. We then construct approximate versions of the holographic hybrid codes by “skewing” the code subspace, where the size of skewing is analogous to the size of the gravitational constant in holography. These approximate hybrid codes are not necessarily stabilizer codes, but they can be expressed as the superposition of holographic tensor networks that are stabilizer codes. For such constructions, different logical states, representing different bulk matter content, can “back-react” on the emergent geometry, resembling a key feature of gravity. The locality of the bulk degrees of freedom becomes subspace-dependent and approximate. Such subspace-dependence is manifest from the point of view of the “entanglement wedge” and bulk operator reconstruction from the boundary. Exact complementary error correction breaks down for certain bipartition of the boundary degrees of freedom; however, a limited, state-dependent form is preserved for particular subspaces. We also construct an example where the connected two-point correlation functions can have a power-law decay. Coupled with known constraints from holography, a weakly back-reacting bulk also forces these skewed tensor network models to the “large N limit” where they are built by concatenating a large N number of copies.
References
L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].
G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].
T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear gravity from entanglement in conformal field theories, JHEP 08 (2017) 057 [arXiv:1705.03026] [INSPIRE].
D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].
A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].
C. Cao and S.M. Carroll, Bulk entanglement gravity without a boundary: towards finding Einstein’s equation in Hilbert space, Phys. Rev. D 97 (2018) 086003 [arXiv:1712.02803] [INSPIRE].
I. Kim, E. Tang and J. Preskill, The ghost in the radiation: Robust encodings of the black hole interior, JHEP 06 (2020) 031 [arXiv:2003.05451] [INSPIRE].
B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101 (2008) 110501 [quant-ph/0610099] [INSPIRE].
C. Beny, Causal structure of the entanglement renormalization ansatz, New J. Phys. 15 (2013) 023020 [arXiv:1110.4872] [INSPIRE].
N. Bao et al., Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence, Phys. Rev. D 91 (2015) 125036 [arXiv:1504.06632] [INSPIRE].
B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor networks from kinematic space, JHEP 07 (2016) 100 [arXiv:1512.01548] [INSPIRE].
A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE].
F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].
Z. Yang, P. Hayden and X.-L. Qi, Bidirectional holographic codes and sub-AdS locality, JHEP 01 (2016) 175 [arXiv:1510.03784] [INSPIRE].
P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].
I.H. Kim and M.J. Kastoryano, Entanglement renormalization, quantum error correction, and bulk causality, JHEP 04 (2017) 040 [arXiv:1701.00050] [INSPIRE].
T. Kohler and T. Cubitt, Toy models of holographic duality between local Hamiltonians, JHEP 08 (2019) 017 [arXiv:1810.08992] [INSPIRE].
N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond toy models: distilling tensor networks in full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].
J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement wedge reconstruction via universal recovery channels, Phys. Rev. X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].
P. Hayden and G. Penington, Learning the alpha-bits of black holes, JHEP 12 (2019) 007 [arXiv:1807.06041] [INSPIRE].
P. Faist et al., Continuous symmetries and approximate quantum error correction, Phys. Rev. X 10 (2020) 041018 [arXiv:1902.07714] [INSPIRE].
R. Laflamme, C. Miquel, J.P. Paz and W.H. Zurek, Perfect quantum error correction code, quant-ph/9602019.
J. Preskill, Lecture notes for physics 219: quantum computation, http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf (1997–1998).
D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys. 354 (2017) 865 [arXiv:1607.03901] [INSPIRE].
W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].
W. Donnelly, B. Michel, D. Marolf and J. Wien, Living on the edge: a toy model for holographic reconstruction of algebras with centers, JHEP 04 (2017) 093 [arXiv:1611.05841] [INSPIRE].
K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].
W. Donnelly and S.B. Giddings, Observables, gravitational dressing, and obstructions to locality and subsystems, Phys. Rev. D 94 (2016) 104038 [arXiv:1607.01025] [INSPIRE].
I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].
O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].
J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].
J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].
A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].
D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].
X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].
X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
C. Cao, S.M. Carroll and S. Michalakis, Space from Hilbert space: recovering geometry from bulk entanglement, Phys. Rev. D 95 (2017) 024031 [arXiv:1606.08444] [INSPIRE].
S.B. Giddings, Quantum-first gravity, Found. Phys. 49 (2019) 177 [arXiv:1803.04973] [INSPIRE].
S.M. Carroll and A. Singh, Mad-dog everettianism: quantum mechanics at its most minimal, arXiv:1801.08132 [INSPIRE].
A. Almheiri, X. Dong and B. Swingle, Linearity of holographic entanglement entropy, JHEP 02 (2017) 074 [arXiv:1606.04537] [INSPIRE].
C. Akers and P. Rath, Holographic Renyi entropy from quantum error correction, JHEP 05 (2019) 052 [arXiv:1811.05171] [INSPIRE].
X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum gravity, JHEP 10 (2019) 240 [arXiv:1811.05382] [INSPIRE].
P.W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (1995) R2493.
D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73 (2006) 012340 [quant-ph/0506023].
S. Bravyi, Subsystem codes with spatially local generators, Phys. Rev. A 83 (2011) 012320 [arXiv:1008.1029].
D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95 (2005) 230504 [quant-ph/0508131].
Z. Jiang and E.G. Rieffel, Non-commuting two-local Hamiltonians for quantum error suppression, arXiv:1511.01997.
D. Bacon, D. Lidar and K. Whaley, Robustness of decoherence-free subspaces for quantum computation, Phys. Rev. A 60 (1999) 1944.
J. Haah and J. Preskill, Logical operator tradeoff for local quantum codes, arXiv:1011.3529.
S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys. 11 (2009) 043029 [arXiv:0810.1983].
S.T. Flammia, J. Haah, M.J. Kastoryano and I.H. Kim, Limits on the storage of quantum information in a volume of space, Quantum 1 (2017) 4 [arXiv:1610.06169] [INSPIRE].
B. Schumacher and M.A. Nielsen, Quantum data processing and error correction, Phys. Rev. A 54 (1996) 2629 [quant-ph/9604022] [INSPIRE].
T. Farrelly, R.J. Harris, N.A. McMahon and T.M. Stace, Tensor-network codes, arXiv:2009.10329 [INSPIRE].
F. Pastawski and J. Preskill, Code properties from holographic geometries, Phys. Rev. X 7 (2017) 021022 [arXiv:1612.00017] [INSPIRE].
N. Bao, C. Cao, S.M. Carroll and A. Chatwin-Davies, De Sitter space as a tensor network: cosmic no-hair, complementarity, and complexity, Phys. Rev. D 96 (2017) 123536 [arXiv:1709.03513] [INSPIRE].
N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, The quantum entropy cone of hypergraphs, SciPost Phys. 9 (2020) 067 [arXiv:2002.05317] [INSPIRE].
N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].
P. Hayden and G. Penington, Approximate quantum error correction revisited: introducing the alpha-bit, Commun. Math. Phys. 374 (2020) 369 [arXiv:1706.09434] [INSPIRE].
C. Akers, S. Leichenauer and A. Levine, Large breakdowns of entanglement wedge reconstruction, Phys. Rev. D 100 (2019) 126006 [arXiv:1908.03975] [INSPIRE].
E. Gesteau and M.J. Kang, The infinite-dimensional HaPPY code: entanglement wedge reconstruction and dynamics, arXiv:2005.05971 [INSPIRE].
A. Jahn, Z. Zimborás and J. Eisert, Tensor network models of AdS/qCFT, arXiv:2004.04173 [INSPIRE].
G. Evenbly, Hyperinvariant tensor networks and holography, Phys. Rev. Lett. 119 (2017) 141602 [arXiv:1704.04229] [INSPIRE].
C. Cao, J. Pollack and Y. Wang, Hyper-invariant MERA: approximate holographic error correction codes with power-law correlations, arXiv:2103.08631 [INSPIRE].
X. Dong, The gravity dual of renyi entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].
A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE].
C. Akers and P. Rath, Entanglement wedge cross sections require tripartite entanglement, JHEP 04 (2020) 208 [arXiv:1911.07852] [INSPIRE].
T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].
P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of purification: from spin chains to holography, JHEP 01 (2018) 098 [arXiv:1709.07424] [INSPIRE].
S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, JHEP 03 (2021) 178 [arXiv:1905.00577] [INSPIRE].
P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].
T. Jacobson, Entanglement equilibrium and the Einstein equation, Phys. Rev. Lett. 116 (2016) 201101 [arXiv:1505.04753] [INSPIRE].
B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, Equivalent equations of motion for gravity and entropy, JHEP 02 (2017) 004 [arXiv:1608.06282] [INSPIRE].
S.B. Giddings, Quantum gravity: a quantum-first approach, LHEP 1 (2018) 1 [arXiv:1805.06900] [INSPIRE].
C.D. White, C. Cao and B. Swingle, Conformal field theories are magical, Phys. Rev. B 103 (2021) 075145 [arXiv:2007.01303] [INSPIRE].
S. Ghosh, R.M. Soni and S.P. Trivedi, On the entanglement entropy for gauge theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [INSPIRE].
H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].
E. Mintun, J. Polchinski and V. Rosenhaus, Bulk-boundary duality, gauge invariance, and quantum error corrections, Phys. Rev. Lett. 115 (2015) 151601 [arXiv:1501.06577] [INSPIRE].
D. Gottesman, A. Kitaev and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64 (2001) 012310 [quant-ph/0008040] [INSPIRE].
M.P. Woods and A.M. Alhambra, Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames, Quantum 4 (2020) 245 [arXiv:1902.07725] [INSPIRE].
A. Kubica and R.L. Demkowicz-Dobrzański, Using quantum metrological bounds in quantum error correction: a simple proof of the approximate Eastin-Knill theorem, Phys. Rev. Lett. 126 (2021) 150503 [arXiv:2004.11893] [INSPIRE].
P. Hayden, S. Nezami, S. Popescu and G. Salton, Error correction of quantum reference frame information, P. R. X. Quantum. 2 (2021) 010326 [arXiv:1709.04471] [INSPIRE].
A.J. Ferris and D. Poulin, Tensor networks and quantum error correction, Phys. Rev. Lett. 113 (2014) 030501 [arXiv:1312.4578].
R.J. Harris, N.A. McMahon, G.K. Brennen and T.M. Stace, Calderbank-Shor-Steane holographic quantum error-correcting codes, Phys. Rev. A 98 (2018) 052301 [arXiv:1806.06472] [INSPIRE].
R.J. Harris, E. Coupe, N.A. McMahon, G.K. Brennen and T.M. Stace, Maximum likelihood decoder for holographic codes, arXiv:2008.10206.
T. Camara, H. Ollivier and J.P. Tillich, Constructions and performance of classes of quantum LDPC codes, quant-ph/0502086.
T.C. Bohdanowicz, E. Crosson, C. Nirkhe and H. Yuen, Good approximate quantum LDPC codes from spacetime circuit Hamiltonians, arXiv:1811.00277.
O. Fawzi, A. Grospellier and A. Leverrier, Constant overhead quantum fault-tolerance with quantum expander codes, arXiv:1808.03821.
M. Ohya and D. Petz, Quantum entropy and its use, Texts and monographs in physics, Springer, Germany (1993).
M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Annales Henri Poincaré 19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].
M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest and H.-J. Briegel, Entanglement in graph states and its applications, quant-ph/0602096.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2010.05960
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Cao, C., Lackey, B. Approximate Bacon-Shor code and holography. J. High Energ. Phys. 2021, 127 (2021). https://doi.org/10.1007/JHEP05(2021)127
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2021)127
Keywords
- AdS-CFT Correspondence
- Models of Quantum Gravity