Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Approximate Bacon-Shor code and holography

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 14 May 2021
  • volume 2021, Article number: 127 (2021)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Approximate Bacon-Shor code and holography
Download PDF
  • ChunJun Cao  ORCID: orcid.org/0000-0002-5761-54741 &
  • Brad Lackey1,2,3,4 
  • 337 Accesses

  • 9 Citations

  • 14 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We explicitly construct a class of holographic quantum error correction codes with non-trivial centers in the code subalgebra. Specifically, we use the Bacon-Shor codes and perfect tensors to construct a gauge code (or a stabilizer code with gauge-fixing), which we call the holographic hybrid code. This code admits a local log-depth encoding/decoding circuit, and can be represented as a holographic tensor network which satisfies an analog of the Ryu-Takayanagi formula and reproduces features of the sub-region duality. We then construct approximate versions of the holographic hybrid codes by “skewing” the code subspace, where the size of skewing is analogous to the size of the gravitational constant in holography. These approximate hybrid codes are not necessarily stabilizer codes, but they can be expressed as the superposition of holographic tensor networks that are stabilizer codes. For such constructions, different logical states, representing different bulk matter content, can “back-react” on the emergent geometry, resembling a key feature of gravity. The locality of the bulk degrees of freedom becomes subspace-dependent and approximate. Such subspace-dependence is manifest from the point of view of the “entanglement wedge” and bulk operator reconstruction from the boundary. Exact complementary error correction breaks down for certain bipartition of the boundary degrees of freedom; however, a limited, state-dependent form is preserved for particular subspaces. We also construct an example where the connected two-point correlation functions can have a power-law decay. Coupled with known constraints from holography, a weakly back-reacting bulk also forces these skewed tensor network models to the “large N limit” where they are built by concatenating a large N number of copies.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. L. Susskind, The World as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. G. ’t Hooft, Dimensional reduction in quantum gravity, Conf. Proc. C 930308 (1993) 284 [gr-qc/9310026] [INSPIRE].

  3. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  4. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from entanglement in holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. T. Faulkner, F.M. Haehl, E. Hijano, O. Parrikar, C. Rabideau and M. Van Raamsdonk, Nonlinear gravity from entanglement in conformal field theories, JHEP 08 (2017) 057 [arXiv:1705.03026] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D. Stanford and L. Susskind, Complexity and shock wave geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic complexity equals bulk action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. C. Cao and S.M. Carroll, Bulk entanglement gravity without a boundary: towards finding Einstein’s equation in Hilbert space, Phys. Rev. D 97 (2018) 086003 [arXiv:1712.02803] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. I. Kim, E. Tang and J. Preskill, The ghost in the radiation: Robust encodings of the black hole interior, JHEP 06 (2020) 031 [arXiv:2003.05451] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].

    Article  ADS  Google Scholar 

  16. G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101 (2008) 110501 [quant-ph/0610099] [INSPIRE].

  17. C. Beny, Causal structure of the entanglement renormalization ansatz, New J. Phys. 15 (2013) 023020 [arXiv:1110.4872] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. N. Bao et al., Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence, Phys. Rev. D 91 (2015) 125036 [arXiv:1504.06632] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Czech, L. Lamprou, S. McCandlish and J. Sully, Tensor networks from kinematic space, JHEP 07 (2016) 100 [arXiv:1512.01548] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Milsted and G. Vidal, Geometric interpretation of the multi-scale entanglement renormalization ansatz, arXiv:1812.00529 [INSPIRE].

  21. F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Z. Yang, P. Hayden and X.-L. Qi, Bidirectional holographic codes and sub-AdS locality, JHEP 01 (2016) 175 [arXiv:1510.03784] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. I.H. Kim and M.J. Kastoryano, Entanglement renormalization, quantum error correction, and bulk causality, JHEP 04 (2017) 040 [arXiv:1701.00050] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. T. Kohler and T. Cubitt, Toy models of holographic duality between local Hamiltonians, JHEP 08 (2019) 017 [arXiv:1810.08992] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. N. Bao, G. Penington, J. Sorce and A.C. Wall, Beyond toy models: distilling tensor networks in full AdS/CFT, JHEP 11 (2019) 069 [arXiv:1812.01171] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement wedge reconstruction via universal recovery channels, Phys. Rev. X 9 (2019) 031011 [arXiv:1704.05839] [INSPIRE].

    Google Scholar 

  28. P. Hayden and G. Penington, Learning the alpha-bits of black holes, JHEP 12 (2019) 007 [arXiv:1807.06041] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. P. Faist et al., Continuous symmetries and approximate quantum error correction, Phys. Rev. X 10 (2020) 041018 [arXiv:1902.07714] [INSPIRE].

    Google Scholar 

  30. R. Laflamme, C. Miquel, J.P. Paz and W.H. Zurek, Perfect quantum error correction code, quant-ph/9602019.

  31. J. Preskill, Lecture notes for physics 219: quantum computation, http://www.theory.caltech.edu/people/preskill/ph229/notes/chap7.pdf (1997–1998).

  32. D. Harlow, The Ryu-Takayanagi formula from quantum error correction, Commun. Math. Phys. 354 (2017) 865 [arXiv:1607.03901] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].

    Article  ADS  Google Scholar 

  34. W. Donnelly, B. Michel, D. Marolf and J. Wien, Living on the edge: a toy model for holographic reconstruction of algebras with centers, JHEP 04 (2017) 093 [arXiv:1611.05841] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, Phys. Rev. D 89 (2014) 086010 [arXiv:1310.6335] [INSPIRE].

    Article  ADS  Google Scholar 

  36. W. Donnelly and S.B. Giddings, Observables, gravitational dressing, and obstructions to locality and subsystems, Phys. Rev. D 94 (2016) 104038 [arXiv:1607.01025] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  38. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  41. J.D. Bekenstein, Black holes and the second law, Lett. Nuovo Cim. 4 (1972) 737 [INSPIRE].

    Article  ADS  Google Scholar 

  42. J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].

  47. C. Cao, S.M. Carroll and S. Michalakis, Space from Hilbert space: recovering geometry from bulk entanglement, Phys. Rev. D 95 (2017) 024031 [arXiv:1606.08444] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. S.B. Giddings, Quantum-first gravity, Found. Phys. 49 (2019) 177 [arXiv:1803.04973] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. S.M. Carroll and A. Singh, Mad-dog everettianism: quantum mechanics at its most minimal, arXiv:1801.08132 [INSPIRE].

  50. A. Almheiri, X. Dong and B. Swingle, Linearity of holographic entanglement entropy, JHEP 02 (2017) 074 [arXiv:1606.04537] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. C. Akers and P. Rath, Holographic Renyi entropy from quantum error correction, JHEP 05 (2019) 052 [arXiv:1811.05171] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum gravity, JHEP 10 (2019) 240 [arXiv:1811.05382] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. P.W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (1995) R2493.

    Article  ADS  Google Scholar 

  54. D. Bacon, Operator quantum error-correcting subsystems for self-correcting quantum memories, Phys. Rev. A 73 (2006) 012340 [quant-ph/0506023].

  55. S. Bravyi, Subsystem codes with spatially local generators, Phys. Rev. A 83 (2011) 012320 [arXiv:1008.1029].

    Article  ADS  Google Scholar 

  56. D. Poulin, Stabilizer formalism for operator quantum error correction, Phys. Rev. Lett. 95 (2005) 230504 [quant-ph/0508131].

  57. Z. Jiang and E.G. Rieffel, Non-commuting two-local Hamiltonians for quantum error suppression, arXiv:1511.01997.

  58. D. Bacon, D. Lidar and K. Whaley, Robustness of decoherence-free subspaces for quantum computation, Phys. Rev. A 60 (1999) 1944.

    Article  ADS  Google Scholar 

  59. J. Haah and J. Preskill, Logical operator tradeoff for local quantum codes, arXiv:1011.3529.

  60. S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys. 11 (2009) 043029 [arXiv:0810.1983].

    Article  ADS  Google Scholar 

  61. S.T. Flammia, J. Haah, M.J. Kastoryano and I.H. Kim, Limits on the storage of quantum information in a volume of space, Quantum 1 (2017) 4 [arXiv:1610.06169] [INSPIRE].

    Article  Google Scholar 

  62. B. Schumacher and M.A. Nielsen, Quantum data processing and error correction, Phys. Rev. A 54 (1996) 2629 [quant-ph/9604022] [INSPIRE].

  63. T. Farrelly, R.J. Harris, N.A. McMahon and T.M. Stace, Tensor-network codes, arXiv:2009.10329 [INSPIRE].

  64. F. Pastawski and J. Preskill, Code properties from holographic geometries, Phys. Rev. X 7 (2017) 021022 [arXiv:1612.00017] [INSPIRE].

    Google Scholar 

  65. N. Bao, C. Cao, S.M. Carroll and A. Chatwin-Davies, De Sitter space as a tensor network: cosmic no-hair, complementarity, and complexity, Phys. Rev. D 96 (2017) 123536 [arXiv:1709.03513] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. N. Bao, N. Cheng, S. Hernández-Cuenca and V.P. Su, The quantum entropy cone of hypergraphs, SciPost Phys. 9 (2020) 067 [arXiv:2002.05317] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  67. N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

    Article  ADS  Google Scholar 

  68. P. Hayden and G. Penington, Approximate quantum error correction revisited: introducing the alpha-bit, Commun. Math. Phys. 374 (2020) 369 [arXiv:1706.09434] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. C. Akers, S. Leichenauer and A. Levine, Large breakdowns of entanglement wedge reconstruction, Phys. Rev. D 100 (2019) 126006 [arXiv:1908.03975] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  70. E. Gesteau and M.J. Kang, The infinite-dimensional HaPPY code: entanglement wedge reconstruction and dynamics, arXiv:2005.05971 [INSPIRE].

  71. A. Jahn, Z. Zimborás and J. Eisert, Tensor network models of AdS/qCFT, arXiv:2004.04173 [INSPIRE].

  72. G. Evenbly, Hyperinvariant tensor networks and holography, Phys. Rev. Lett. 119 (2017) 141602 [arXiv:1704.04229] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  73. C. Cao, J. Pollack and Y. Wang, Hyper-invariant MERA: approximate holographic error correction codes with power-law correlations, arXiv:2103.08631 [INSPIRE].

  74. X. Dong, The gravity dual of renyi entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].

    Article  ADS  Google Scholar 

  75. A. Milekhin, Quantum error correction and large N, arXiv:2008.12869 [INSPIRE].

  76. C. Akers and P. Rath, Entanglement wedge cross sections require tripartite entanglement, JHEP 04 (2020) 208 [arXiv:1911.07852] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

    Article  ADS  Google Scholar 

  78. P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of purification: from spin chains to holography, JHEP 01 (2018) 098 [arXiv:1709.07424] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge cross-section, JHEP 03 (2021) 178 [arXiv:1905.00577] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  80. P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].

    Article  ADS  Google Scholar 

  81. N. Bao, S. Nezami, H. Ooguri, B. Stoica, J. Sully and M. Walter, The holographic entropy cone, JHEP 09 (2015) 130 [arXiv:1505.07839] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. T. Jacobson, Entanglement equilibrium and the Einstein equation, Phys. Rev. Lett. 116 (2016) 201101 [arXiv:1505.04753] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  83. B. Czech, L. Lamprou, S. McCandlish, B. Mosk and J. Sully, Equivalent equations of motion for gravity and entropy, JHEP 02 (2017) 004 [arXiv:1608.06282] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. S.B. Giddings, Quantum gravity: a quantum-first approach, LHEP 1 (2018) 1 [arXiv:1805.06900] [INSPIRE].

    Article  Google Scholar 

  85. C.D. White, C. Cao and B. Swingle, Conformal field theories are magical, Phys. Rev. B 103 (2021) 075145 [arXiv:2007.01303] [INSPIRE].

    Article  ADS  Google Scholar 

  86. S. Ghosh, R.M. Soni and S.P. Trivedi, On the entanglement entropy for gauge theories, JHEP 09 (2015) 069 [arXiv:1501.02593] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  87. H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].

    Article  ADS  Google Scholar 

  88. E. Mintun, J. Polchinski and V. Rosenhaus, Bulk-boundary duality, gauge invariance, and quantum error corrections, Phys. Rev. Lett. 115 (2015) 151601 [arXiv:1501.06577] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. D. Gottesman, A. Kitaev and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64 (2001) 012310 [quant-ph/0008040] [INSPIRE].

  90. M.P. Woods and A.M. Alhambra, Continuous groups of transversal gates for quantum error correcting codes from finite clock reference frames, Quantum 4 (2020) 245 [arXiv:1902.07725] [INSPIRE].

    Article  Google Scholar 

  91. A. Kubica and R.L. Demkowicz-Dobrzański, Using quantum metrological bounds in quantum error correction: a simple proof of the approximate Eastin-Knill theorem, Phys. Rev. Lett. 126 (2021) 150503 [arXiv:2004.11893] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  92. P. Hayden, S. Nezami, S. Popescu and G. Salton, Error correction of quantum reference frame information, P. R. X. Quantum. 2 (2021) 010326 [arXiv:1709.04471] [INSPIRE].

    Article  Google Scholar 

  93. A.J. Ferris and D. Poulin, Tensor networks and quantum error correction, Phys. Rev. Lett. 113 (2014) 030501 [arXiv:1312.4578].

    Article  ADS  Google Scholar 

  94. R.J. Harris, N.A. McMahon, G.K. Brennen and T.M. Stace, Calderbank-Shor-Steane holographic quantum error-correcting codes, Phys. Rev. A 98 (2018) 052301 [arXiv:1806.06472] [INSPIRE].

    Article  ADS  Google Scholar 

  95. R.J. Harris, E. Coupe, N.A. McMahon, G.K. Brennen and T.M. Stace, Maximum likelihood decoder for holographic codes, arXiv:2008.10206.

  96. T. Camara, H. Ollivier and J.P. Tillich, Constructions and performance of classes of quantum LDPC codes, quant-ph/0502086.

  97. T.C. Bohdanowicz, E. Crosson, C. Nirkhe and H. Yuen, Good approximate quantum LDPC codes from spacetime circuit Hamiltonians, arXiv:1811.00277.

  98. O. Fawzi, A. Grospellier and A. Leverrier, Constant overhead quantum fault-tolerance with quantum expander codes, arXiv:1808.03821.

  99. M. Ohya and D. Petz, Quantum entropy and its use, Texts and monographs in physics, Springer, Germany (1993).

  100. M. Junge, R. Renner, D. Sutter, M.M. Wilde and A. Winter, Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy, Annales Henri Poincaré 19 (2018) 2955 [arXiv:1509.07127] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest and H.-J. Briegel, Entanglement in graph states and its applications, quant-ph/0602096.

Download references

Author information

Authors and Affiliations

  1. Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD, 20742, USA

    ChunJun Cao & Brad Lackey

  2. Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA

    Brad Lackey

  3. Departments of Computer Science and Mathematics, University of Maryland, College Park, MD, 20742, USA

    Brad Lackey

  4. Quantum Systems Group, Microsoft, Redmond, WA, 98052, USA

    Brad Lackey

Authors
  1. ChunJun Cao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Brad Lackey
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to ChunJun Cao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.05960

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Lackey, B. Approximate Bacon-Shor code and holography. J. High Energ. Phys. 2021, 127 (2021). https://doi.org/10.1007/JHEP05(2021)127

Download citation

  • Received: 26 February 2021

  • Accepted: 23 April 2021

  • Published: 14 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)127

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Models of Quantum Gravity
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature