Skip to main content

Implications of the XENON1T excess on the dark matter interpretation

A preprint version of the article is available at arXiv.


The dark matter interpretation for a recent observation of excessive electron recoil events at the XENON1T detector seems challenging because its velocity is not large enough to give rise to recoiling electrons of \( \mathcal{O}\left(\mathrm{keV}\right) \). Fast-moving or boosted dark matter scenarios are receiving attention as a remedy for this issue, rendering the dark matter interpretation a possibility to explain the anomaly. We investigate various scenarios where such dark matter of spin 0 and 1/2 interacts with electrons via an exchange of vector, axial-vector, pseudo-scalar, or scalar mediators. We find parameter values not only to reproduce the excess but to be consistent with existing bounds. Our study suggests that the scales of mass and coupling parameters preferred by the excess can be mostly affected by the type of mediator, and that significantly boosted dark matter can explain the excess depending on the mediator type and its mass choice. The method proposed in this work is general, and hence readily applicable to the interpretation of observed data in the dark matter direct detection experiment.


  1. [1]

    XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].

  2. [2]

    K. Kannike, M. Raidal, H. Veermäe, A. Strumia and D. Teresi, Dark Matter and the XENON1T electron recoil excess, Phys. Rev. D 102 (2020) 095002 [arXiv:2006.10735] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    G. F. Giudice, D. Kim, J.-C. Park and S. Shin, Inelastic Boosted Dark Matter at Direct Detection Experiments, Phys. Lett. B 780 (2018) 543 [arXiv:1712.07126] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    F. Takahashi, M. Yamada and W. Yin, XENON1T Excess from Anomaly-Free Axionlike Dark Matter and Its Implications for Stellar Cooling Anomaly, Phys. Rev. Lett. 125 (2020) 161801 [arXiv:2006.10035] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    G. Alonso-Álvarez, F. Ertas, J. Jaeckel, F. Kahlhoefer and L. J. Thormaehlen, Hidden Photon Dark Matter in the Light of XENON1T and Stellar Cooling, JCAP 11 (2020) 029 [arXiv:2006.11243] [INSPIRE].

    ADS  Article  Google Scholar 

  6. [6]

    I. M. Bloch, A. Caputo, R. Essig, D. Redigolo, M. Sholapurkar and T. Volansky, Exploring new physics with O(keV) electron recoils in direct detection experiments, JHEP 01 (2021) 178 [arXiv:2006.14521] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    K. Harigaya, Y. Nakai and M. Suzuki, Inelastic Dark Matter Electron Scattering and the XENON1T Excess, Phys. Lett. B 809 (2020) 135729 [arXiv:2006.11938] [INSPIRE].

    Article  Google Scholar 

  8. [8]

    H. M. Lee, Exothermic dark matter for XENON1T excess, JHEP 01 (2021) 019 [arXiv:2006.13183] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    C. Boehm, D. G. Cerdeno, M. Fairbairn, P. A. N. Machado and A. C. Vincent, Light new physics in XENON1T, Phys. Rev. D 102 (2020) 115013 [arXiv:2006.11250] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    A. Bally, S. Jana and A. Trautner, Neutrino self-interactions and XENON1T electron recoil excess, Phys. Rev. Lett. 125 (2020) 161802 [arXiv:2006.11919] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    A. N. Khan, Can Nonstandard Neutrino Interactions explain the XENON1T spectral excess?, Phys. Lett. B 809 (2020) 135782 [arXiv:2006.12887] [INSPIRE].

    Article  Google Scholar 

  12. [12]

    Y. Jho, J.-C. Park, S. C. Park and P.-Y. Tseng, Leptonic New Force and Cosmic-ray Boosted Dark Matter for the XENON1T Excess, Phys. Lett. B 811 (2020) 135863 [arXiv:2006.13910] [INSPIRE].

    Article  Google Scholar 

  13. [13]

    S.-F. Ge, P. Pasquini and J. Sheng, Solar neutrino scattering with electron into massive sterile neutrino, Phys. Lett. B 810 (2020) 135787 [arXiv:2006.16069] [INSPIRE].

    Article  Google Scholar 

  14. [14]

    D. Buttazzo, P. Panci, D. Teresi and R. Ziegler, Xenon1T excess from electron recoils of non-relativistic Dark Matter, arXiv:2011.08919 [INSPIRE].

  15. [15]

    L. Su, W. Wang, L. Wu, J. M. Yang and B. Zhu, Atmospheric Dark Matter and Xenon1T Excess, Phys. Rev. D 102 (2020) 115028 [arXiv:2006.11837] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    G. Paz, A. A. Petrov, M. Tammaro and J. Zupan, Shining dark matter in Xenon1T, Phys. Rev. D 103 (2021) L051703 [arXiv:2006.12462] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    H. An and D. Yang, Direct detection of freeze-in inelastic dark matter, arXiv:2006.15672 [INSPIRE].

  18. [18]

    B. Bhattacherjee and R. Sengupta, XENON1T Excess: Some Possible Backgrounds, arXiv:2006.16172 [INSPIRE].

  19. [19]

    Y. Jho, J.-C. Park, S. C. Park and P.-Y. Tseng, Cosmic-Neutrino-Boosted Dark Matter (νBDM), arXiv:2101.11262 [INSPIRE].

  20. [20]

    F. D’Eramo and J. Thaler, Semi-annihilation of Dark Matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  21. [21]

    G. Bélanger and J.-C. Park, Assisted freeze-out, JCAP 03 (2012) 038 [arXiv:1112.4491] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    K. Agashe, Y. Cui, L. Necib and J. Thaler, (In)direct Detection of Boosted Dark Matter, JCAP 10 (2014) 062 [arXiv:1405.7370] [INSPIRE].

  23. [23]

    D. Kim, J.-C. Park and S. Shin, Dark Matter “Collider” from Inelastic Boosted Dark Matter, Phys. Rev. Lett. 119 (2017) 161801 [arXiv:1612.06867] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    J. Huang and Y. Zhao, Dark Matter Induced Nucleon Decay: Model and Signatures, JHEP 02 (2014) 077 [arXiv:1312.0011] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    W. Yin, Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal, EPJ Web Conf. 208 (2019) 04003 [arXiv:1809.08610] [INSPIRE].

    Article  Google Scholar 

  26. [26]

    T. Bringmann and M. Pospelov, Novel direct detection constraints on light dark matter, Phys. Rev. Lett. 122 (2019) 171801 [arXiv:1810.10543] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    Y. Ema, F. Sala and R. Sato, Light Dark Matter at Neutrino Experiments, Phys. Rev. Lett. 122 (2019) 181802 [arXiv:1811.00520] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    B. Fornal, P. Sandick, J. Shu, M. Su and Y. Zhao, Boosted Dark Matter Interpretation of the XENON1T Excess, Phys. Rev. Lett. 125 (2020) 161804 [arXiv:2006.11264] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    J. F. Cherry, M. T. Frandsen and I. M. Shoemaker, Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei, Phys. Rev. Lett. 114 (2015) 231303 [arXiv:1501.03166] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    Super-Kamiokande collaboration, Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande, Phys. Rev. Lett. 120 (2018) 221301 [arXiv:1711.05278] [INSPIRE].

  31. [31]

    COSINE-100 collaboration, First Direct Search for Inelastic Boosted Dark Matter with COSINE-100, Phys. Rev. Lett. 122 (2019) 131802 [arXiv:1811.09344] [INSPIRE].

  32. [32]

    M. Cardona and L. Ley, Photoemission in Solids I, vol. 26, (1978), [DOI].

  33. [33]

    J. A. Bearden and A. F. Burr, Reevaluation of X-Ray Atomic Energy Levels, Rev. Mod. Phys. 39 (1967) 125 [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    Q.-H. Cao, R. Ding and Q.-F. Xiang, Searching for sub-MeV boosted dark matter from xenon electron direct detection, Chin. Phys. C 45 (2021) 045002 [arXiv:2006.12767] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    H. Alhazmi, D. Kim, K. Kong, G. Mohlabeng, J.-C. Park and S. Shin, Effects of Ionization Factors in the scattering of Fast Moving Dark Matter and Bound Electrons, in preparation.

  36. [36]

    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    S. K. Lee, M. Lisanti, S. Mishra-Sharma and B. R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    XENON collaboration, Energy resolution and linearity of XENON1T in the MeV energy range, Eur. Phys. J. C 80 (2020) 785 [arXiv:2003.03825] [INSPIRE].

  39. [39]

    J. F. Navarro, C. S. Frenk and S. D. M. White, The Structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    J. F. Navarro, C. S. Frenk and S. D. M. White, A Universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    D. Kim, P. A. N. Machado, J.-C. Park and S. Shin, Optimizing Energetic Light Dark Matter Searches in Dark Matter and Neutrino Experiments, JHEP 07 (2020) 057 [arXiv:2003.07369] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    NA64 collaboration, Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+ e pairs, Phys. Rev. D 101 (2020) 071101 [arXiv:1912.11389] [INSPIRE].

  43. [43]

    J. Jaeckel, E. Masso, J. Redondo, A. Ringwald and F. Takahashi, The Need for purely laboratory-based axion-like particle searches, Phys. Rev. D 75 (2007) 013004 [hep-ph/0610203] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    M. Ahlers, H. Gies, J. Jaeckel and A. Ringwald, On the Particle Interpretation of the PVLAS Data: Neutral versus Charged Particles, Phys. Rev. D 75 (2007) 035011 [hep-ph/0612098] [INSPIRE].

    ADS  Article  Google Scholar 

  45. [45]

    J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 405 [arXiv:1002.0329] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  47. [47]

    J. Khoury and A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    E. Masso and J. Redondo, Evading astrophysical constraints on axion-like particles, JCAP 09 (2005) 015 [hep-ph/0504202] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    E. Masso and J. Redondo, Compatibility of CAST search with axion-like interpretation of PVLAS results, Phys. Rev. Lett. 97 (2006) 151802 [hep-ph/0606163] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    R. N. Mohapatra and S. Nasri, Reconciling the CAST and PVLAS results, Phys. Rev. Lett. 98 (2007) 050402 [hep-ph/0610068] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    A. Dupays, E. Masso, J. Redondo and C. Rizzo, Light scalars coupled to photons and non-newtonian forces, Phys. Rev. Lett. 98 (2007) 131802 [hep-ph/0610286] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    P. Brax, C. van de Bruck and A.-C. Davis, Compatibility of the chameleon-field model with fifth-force experiments, cosmology, and PVLAS and CAST results, Phys. Rev. Lett. 99 (2007) 121103 [hep-ph/0703243] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    J. E. Kim, PVLAS experiment, star cooling and BBN constraints: Possible interpretation with temperature dependent gauge symmetry breaking, Phys. Rev. D 76 (2007) 051701 [arXiv:0704.3310] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    W. M. Bonivento, D. Kim and K. Sinha, PASSAT: Particle Accelerator helioScopes for Slim Axion-like-particle deTection, Eur. Phys. J. C 80 (2020) 164 [arXiv:1909.03071] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    J. B. Dent, B. Dutta, D. Kim, S. Liao, R. Mahapatra, K. Sinha et al., New Directions for Axion Searches via Scattering at Reactor Neutrino Experiments, Phys. Rev. Lett. 124 (2020) 211804 [arXiv:1912.05733] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    C. Bunge, J. Barrientos and A. Bunge, Roothaan-Hartree-Fock Ground-State Atomic Wave Functions: Slater-Type Orbital Expansions and Expectation Values for Z = 2–54, Atom. Data Nucl. Data Tabl. 53 (1993) 113.

    ADS  Article  Google Scholar 

  57. [57]

    J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev. D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    B. M. Roberts, V. A. Dzuba, V. V. Flambaum, M. Pospelov and Y. V. Stadnik, Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal, Phys. Rev. D 93 (2016) 115037 [arXiv:1604.04559] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    R. Catena, T. Emken, N. A. Spaldin and W. Tarantino, Atomic responses to general dark matter-electron interactions, Phys. Rev. Res. 2 (2020) 033195 [arXiv:1912.08204] [INSPIRE].

    Article  Google Scholar 

  60. [60]

    B. M. Roberts and V. V. Flambaum, Electron-interacting dark matter: Implications from DAMA/LIBRA-phase2 and prospects for liquid xenon detectors and NaI detectors, Phys. Rev. D 100 (2019) 063017 [arXiv:1904.07127] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Seodong Shin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2006.16252

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alhazmi, H., Kim, D., Kong, K. et al. Implications of the XENON1T excess on the dark matter interpretation. J. High Energ. Phys. 2021, 55 (2021).

Download citation


  • Beyond Standard Model
  • Cosmology of Theories beyond the SM