Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Multi-mouth traversable wormholes
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Unimodular gravity traversable wormholes

24 March 2023

A. S. Agrawal, B. Mishra & P. H. R. S. Moraes

Einstein–Dirac–Maxwell wormholes: ansatz, construction and properties of symmetric solutions

15 June 2022

Jose Luis Blázquez-Salcedo, Christian Knoll & E. Radu

Information transfer and black hole evaporation via traversable BTZ wormholes

10 September 2019

Shinji Hirano, Yang Lei & Sam van Leuven

Traversability of multi-boundary wormholes

09 April 2021

Abdulrahim Al Balushi, Zhencheng Wang & Donald Marolf

Construction of a traversable wormhole from a suitable embedding function

11 July 2022

A. Rueda, R. Avalos & E. Contreras

Making near-extremal wormholes traversable

07 December 2020

Seamus Fallows & Simon F. Ross

Four-dimensional traversable wormholes and bouncing cosmologies in vacuum

16 April 2019

Andrés Anabalón & Julio Oliva

Lessons on eternal traversable wormholes in AdS

22 July 2019

Ben Freivogel, Victor Godet, … Antonio Rotundo

Gravitational lensing by wormholes supported by electromagnetic, scalar, and quantum effects

05 September 2019

Kimet Jusufi, Ali Övgün, … İzzet Sakallı

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 May 2021

Multi-mouth traversable wormholes

  • Roberto Emparan1,2,
  • Brianna Grado-White3,4,
  • Donald Marolf3 &
  • …
  • Marija Tomašević2,5 

Journal of High Energy Physics volume 2021, Article number: 32 (2021) Cite this article

  • 302 Accesses

  • 9 Citations

  • 101 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We describe the construction of traversable wormholes with multiple mouths in four spacetime dimensions and discuss associated quantum entanglement. Our wormholes may be traversed between any pair of mouths. In particular, in the three-mouth case they have fundamental group F2 (the free group on two generators). By contrast, connecting three regions A, B, C in pairs (AB, BC, and AC) using three separate wormholes would give fundamental group F3. Our solutions are asymptotically flat up to the presence of possible magnetic fluxes or cosmic strings that extend to infinity. The construction begins with a two-mouth traversable wormhole supported by backreaction from quantum fields. Inserting a sufficiently small black hole into its throat preserves traversability between the original two mouths. This black hole is taken to be the mouth of another wormhole connecting the original throat to a new distant region of spacetime. Making the new wormhole traversable in a manner similar to the original two-mouth wormhole provides the desired causal connections. From a dual field theory point of view, when AdS asymptotics are added to our construction, multiparty entanglement may play an important role in the traversability of the resulting wormhole.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. L. Friedman, K. Schleich and D. M. Witt, Topological censorship, Phys. Rev. Lett. 71 (1993) 1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].

  2. G. J. Galloway, K. Schleich, D. M. Witt and E. Woolgar, Topological censorship and higher genus black holes, Phys. Rev. D 60 (1999) 104039 [gr-qc/9902061] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Gao, D. L. Jafferis and A. C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  5. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  6. Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, Class. Quant. Grav. 36 (2019) 045006 [Erratum ibid. 36 (2019) 249501] [arXiv:1807.07917] [INSPIRE].

  7. E. Caceres, A. S. Misobuchi and M.-L. Xiao, Rotating traversable wormholes in AdS, JHEP 12 (2018) 005 [arXiv:1807.07239] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Marolf and S. McBride, Simple Perturbatively Traversable Wormholes from Bulk Fermions, JHEP 11 (2019) 037 [arXiv:1908.03998] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. Z. Fu, B. Grado-White and D. Marolf, Traversable Asymptotically Flat Wormholes with Short Transit Times, Class. Quant. Grav. 36 (2019) 245018 [arXiv:1908.03273] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. G. T. Horowitz, D. Marolf, J. E. Santos and D. Wang, Creating a Traversable Wormhole, Class. Quant. Grav. 36 (2019) 205011 [arXiv:1904.02187] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Maldacena and A. Milekhin, SYK wormhole formation in real time, JHEP 04 (2021) 258 [arXiv:1912.03276] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. A. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. R. Emparan, Black diholes, Phys. Rev. D 61 (2000) 104009 [hep-th/9906160] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. R. Emparan and E. Teo, Macroscopic and microscopic description of black diholes, Nucl. Phys. B 610 (2001) 190 [hep-th/0104206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. A. C. Wall, The Generalized Second Law implies a Quantum Singularity Theorem, Class. Quant. Grav. 30 (2013) 165003 [Erratum ibid. 30 (2013) 199501] [arXiv:1010.5513] [INSPIRE].

  17. S. Gao and R. M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Bousso, Z. Fisher, S. Leichenauer and A. C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Visser, Lorentzian wormholes: From Einstein to Hawking, Amer. Inst. of Physics (1995) [INSPIRE].

  20. J. Maldacena and A. Milekhin, Humanly traversable wormholes, Phys. Rev. D 103 (2021) 066007 [arXiv:2008.06618] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Emparan and M. Gutperle, From p-branes to fluxbranes and back, JHEP 12 (2001) 023 [hep-th/0111177] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Al Balushi, Z. Wang and D. Marolf, Traversability of Multi-Boundary Wormholes, JHEP 04 (2021) 083 [arXiv:2012.04635] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  23. D. Marolf, H. Maxfield, A. Peach and S. F. Ross, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Akers and P. Rath, Entanglement Wedge Cross Sections Require Tripartite Entanglement, JHEP 04 (2020) 208 [arXiv:1911.07852] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Umemoto and T. Takayanagi, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573.

    Article  ADS  Google Scholar 

  26. V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S. F. Ross, Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. B. Freivogel, D. A. Galante, D. Nikolakopoulou and A. Rotundo, Traversable wormholes in AdS and bounds on information transfer, JHEP 01 (2020) 050 [arXiv:1907.13140] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Berenstein, Quenches on thermofield double states and time reversal symmetry, Phys. Rev. D 100 (2019) 066022 [arXiv:1906.08292] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  30. V. Cardoso, E. Franzin, A. Maselli, P. Pani and G. Raposo, Testing strong-field gravity with tidal Love numbers, Phys. Rev. D 95 (2017) 084014 [Addendum ibid. 95 (2017) 089901] [arXiv:1701.01116] [INSPIRE].

  31. F. J. Ernst, Removal of the nodal singularity of the C-metric, J. Math. Phys. 17 (1976) 515.

  32. D. Garfinkle and A. Strominger, Semiclassical Wheeler wormhole production, Phys. Lett. B 256 (1991) 146 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, E-08010, Barcelona, Spain

    Roberto Emparan

  2. Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028, Barcelona, Spain

    Roberto Emparan & Marija Tomašević

  3. Department of Physics, University of California, Santa Barbara, CA, 93106, USA

    Brianna Grado-White & Donald Marolf

  4. Martin Fisher School of Physics, Brandeis University, Waltham, MA, USA

    Brianna Grado-White

  5. Kavli Institute for Theoretical Physics University of California, Santa Barbara, CA, 93106, USA

    Marija Tomašević

Authors
  1. Roberto Emparan
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Brianna Grado-White
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Donald Marolf
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Marija Tomašević
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Marija Tomašević.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.07821

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emparan, R., Grado-White, B., Marolf, D. et al. Multi-mouth traversable wormholes. J. High Energ. Phys. 2021, 32 (2021). https://doi.org/10.1007/JHEP05(2021)032

Download citation

  • Received: 05 April 2021

  • Accepted: 14 April 2021

  • Published: 05 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)032

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.