Skip to main content

Multi-mouth traversable wormholes

A preprint version of the article is available at arXiv.

Abstract

We describe the construction of traversable wormholes with multiple mouths in four spacetime dimensions and discuss associated quantum entanglement. Our wormholes may be traversed between any pair of mouths. In particular, in the three-mouth case they have fundamental group F2 (the free group on two generators). By contrast, connecting three regions A, B, C in pairs (AB, BC, and AC) using three separate wormholes would give fundamental group F3. Our solutions are asymptotically flat up to the presence of possible magnetic fluxes or cosmic strings that extend to infinity. The construction begins with a two-mouth traversable wormhole supported by backreaction from quantum fields. Inserting a sufficiently small black hole into its throat preserves traversability between the original two mouths. This black hole is taken to be the mouth of another wormhole connecting the original throat to a new distant region of spacetime. Making the new wormhole traversable in a manner similar to the original two-mouth wormhole provides the desired causal connections. From a dual field theory point of view, when AdS asymptotics are added to our construction, multiparty entanglement may play an important role in the traversability of the resulting wormhole.

References

  1. J. L. Friedman, K. Schleich and D. M. Witt, Topological censorship, Phys. Rev. Lett. 71 (1993) 1486 [Erratum ibid. 75 (1995) 1872] [gr-qc/9305017] [INSPIRE].

  2. G. J. Galloway, K. Schleich, D. M. Witt and E. Woolgar, Topological censorship and higher genus black holes, Phys. Rev. D 60 (1999) 104039 [gr-qc/9902061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. P. Gao, D. L. Jafferis and A. C. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].

  5. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  6. Z. Fu, B. Grado-White and D. Marolf, A perturbative perspective on self-supporting wormholes, Class. Quant. Grav. 36 (2019) 045006 [Erratum ibid. 36 (2019) 249501] [arXiv:1807.07917] [INSPIRE].

  7. E. Caceres, A. S. Misobuchi and M.-L. Xiao, Rotating traversable wormholes in AdS, JHEP 12 (2018) 005 [arXiv:1807.07239] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. D. Marolf and S. McBride, Simple Perturbatively Traversable Wormholes from Bulk Fermions, JHEP 11 (2019) 037 [arXiv:1908.03998] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. Z. Fu, B. Grado-White and D. Marolf, Traversable Asymptotically Flat Wormholes with Short Transit Times, Class. Quant. Grav. 36 (2019) 245018 [arXiv:1908.03273] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. G. T. Horowitz, D. Marolf, J. E. Santos and D. Wang, Creating a Traversable Wormhole, Class. Quant. Grav. 36 (2019) 205011 [arXiv:1904.02187] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. J. Maldacena and A. Milekhin, SYK wormhole formation in real time, JHEP 04 (2021) 258 [arXiv:1912.03276] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP 12 (2014) 162 [arXiv:1408.6300] [INSPIRE].

    ADS  Article  Google Scholar 

  13. M. A. Melvin, Pure magnetic and electric geons, Phys. Lett. 8 (1964) 65 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. R. Emparan, Black diholes, Phys. Rev. D 61 (2000) 104009 [hep-th/9906160] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. R. Emparan and E. Teo, Macroscopic and microscopic description of black diholes, Nucl. Phys. B 610 (2001) 190 [hep-th/0104206] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. A. C. Wall, The Generalized Second Law implies a Quantum Singularity Theorem, Class. Quant. Grav. 30 (2013) 165003 [Erratum ibid. 30 (2013) 199501] [arXiv:1010.5513] [INSPIRE].

  17. S. Gao and R. M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. R. Bousso, Z. Fisher, S. Leichenauer and A. C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. M. Visser, Lorentzian wormholes: From Einstein to Hawking, Amer. Inst. of Physics (1995) [INSPIRE].

  20. J. Maldacena and A. Milekhin, Humanly traversable wormholes, Phys. Rev. D 103 (2021) 066007 [arXiv:2008.06618] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. R. Emparan and M. Gutperle, From p-branes to fluxbranes and back, JHEP 12 (2001) 023 [hep-th/0111177] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. A. Al Balushi, Z. Wang and D. Marolf, Traversability of Multi-Boundary Wormholes, JHEP 04 (2021) 083 [arXiv:2012.04635] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  23. D. Marolf, H. Maxfield, A. Peach and S. F. Ross, Hot multiboundary wormholes from bipartite entanglement, Class. Quant. Grav. 32 (2015) 215006 [arXiv:1506.04128] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. C. Akers and P. Rath, Entanglement Wedge Cross Sections Require Tripartite Entanglement, JHEP 04 (2020) 208 [arXiv:1911.07852] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. K. Umemoto and T. Takayanagi, Entanglement of purification through holographic duality, Nature Phys. 14 (2018) 573.

    ADS  Article  Google Scholar 

  26. V. Balasubramanian, P. Hayden, A. Maloney, D. Marolf and S. F. Ross, Multiboundary Wormholes and Holographic Entanglement, Class. Quant. Grav. 31 (2014) 185015 [arXiv:1406.2663] [INSPIRE].

    ADS  Article  Google Scholar 

  27. J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. B. Freivogel, D. A. Galante, D. Nikolakopoulou and A. Rotundo, Traversable wormholes in AdS and bounds on information transfer, JHEP 01 (2020) 050 [arXiv:1907.13140] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. D. Berenstein, Quenches on thermofield double states and time reversal symmetry, Phys. Rev. D 100 (2019) 066022 [arXiv:1906.08292] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  30. V. Cardoso, E. Franzin, A. Maselli, P. Pani and G. Raposo, Testing strong-field gravity with tidal Love numbers, Phys. Rev. D 95 (2017) 084014 [Addendum ibid. 95 (2017) 089901] [arXiv:1701.01116] [INSPIRE].

  31. F. J. Ernst, Removal of the nodal singularity of the C-metric, J. Math. Phys. 17 (1976) 515.

  32. D. Garfinkle and A. Strominger, Semiclassical Wheeler wormhole production, Phys. Lett. B 256 (1991) 146 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Tomašević.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.07821

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emparan, R., Grado-White, B., Marolf, D. et al. Multi-mouth traversable wormholes. J. High Energ. Phys. 2021, 32 (2021). https://doi.org/10.1007/JHEP05(2021)032

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2021)032

Keywords

  • AdS-CFT Correspondence
  • Black Holes