Skip to main content

Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV

A preprint version of the article is available at arXiv.

Abstract

Anisotropic flow coefficients, vn, non-linear flow mode coefficients, χn,mk, and correlations among different symmetry planes, ρn,mk are measured in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV. Results obtained with multi-particle correlations are reported for the transverse momentum interval 0.2 < pT < 5.0 GeV/c within the pseudorapidity interval 0.4 < |η| < 0.8 as a function of collision centrality. The vn coefficients and χn,mk and ρn,mk are presented up to the ninth and seventh harmonic order, respectively. Calculations suggest that the correlations measured in different symmetry planes and the non-linear flow mode coefficients are dependent on the shear and bulk viscosity to entropy ratios of the medium created in heavy-ion collisions. The comparison between these measurements and those at lower energies and calculations from hydrodynamic models places strong constraints on the initial conditions and transport properties of the system.

References

  1. J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229 [INSPIRE].

    ADS  Google Scholar 

  2. S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, Landolt-Bornstein 23 (2010) 293 [arXiv:0809.2949] [INSPIRE].

    ADS  Google Scholar 

  3. S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of Azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

  4. A.M. Poskanzer and S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions, Phys. Rev. C 58 (1998) 1671 [nucl-ex/9805001] [INSPIRE].

  5. B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905 [Erratum ibid. C 82 (2010) 039903] [arXiv:1003.0194] [INSPIRE].

  6. ALICE collaboration, Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. Lett. 107 (2011) 032301 [arXiv:1105.3865] [INSPIRE].

  7. ALICE collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [INSPIRE].

  8. ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Lett. B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].

  9. ALICE collaboration, Elliptic flow of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 06 (2015) 190 [arXiv:1405.4632] [INSPIRE].

  10. ALICE collaboration, Higher harmonic flow coefficients of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 09 (2016) 164 [arXiv:1606.06057] [INSPIRE].

  11. ALICE collaboration, Anisotropic flow of charged particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 116 (2016) 132302 [arXiv:1602.01119] [INSPIRE].

  12. ALICE collaboration, Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC, JHEP 09 (2017) 032 [arXiv:1707.05690] [INSPIRE].

  13. ALICE collaboration, Anisotropic flow of identified particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 09 (2018) 006 [arXiv:1805.04390] [INSPIRE].

  14. D.A. Teaney, Viscous Hydrodynamics and the Quark Gluon Plasma, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., pp. 207–266, (2010) [DOI] [arXiv:0905.2433] [INSPIRE].

  15. D. Molnar and M. Gyulassy, Saturation of elliptic flow and the transport opacity of the gluon plasma at RHIC, Nucl. Phys. A 697 (2002) 495 [Erratum ibid. A 703 (2002) 893] [nucl-th/0104073] [INSPIRE].

  16. D. Teaney, The Effects of viscosity on spectra, elliptic flow and HBT radii, Phys. Rev. C 68 (2003) 034913 [nucl-th/0301099] [INSPIRE].

  17. R.A. Lacey et al., Has the QCD Critical Point been Signaled by Observations at RHIC?, Phys. Rev. Lett. 98 (2007) 092301 [nucl-ex/0609025] [INSPIRE].

  18. H.-J. Drescher, A. Dumitru, C. Gombeaud and J.-Y. Ollitrault, The Centrality dependence of elliptic flow, the hydrodynamic limit and the viscosity of hot QCD, Phys. Rev. C 76 (2007) 024905 [arXiv:0704.3553] [INSPIRE].

  19. Z. Xu, C. Greiner and H. Stocker, PQCD calculations of elliptic flow and shear viscosity at RHIC, Phys. Rev. Lett. 101 (2008) 082302 [arXiv:0711.0961] [INSPIRE].

  20. D. Molnar and P. Huovinen, Dissipative effects from transport and viscous hydrodynamics, J. Phys. G 35 (2008) 104125 [arXiv:0806.1367] [INSPIRE].

    ADS  Article  Google Scholar 

  21. U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 [arXiv:1301.2826] [INSPIRE].

    ADS  Article  Google Scholar 

  22. H. Song, Y. Zhou and K. Gajdosova, Collective flow and hydrodynamics in large and small systems at the LHC, Nucl. Sci. Tech. 28 (2017) 99 [arXiv:1703.00670] [INSPIRE].

    Article  Google Scholar 

  23. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  24. D. Teaney and L. Yan, Triangularity and Dipole Asymmetry in Heavy Ion Collisions, Phys. Rev. C 83 (2011) 064904 [arXiv:1010.1876] [INSPIRE].

  25. H. Niemi, K.J. Eskola and R. Paatelainen, Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions, Phys. Rev. C 93 (2016) 024907 [arXiv:1505.02677] [INSPIRE].

  26. H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen, Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87 (2013) 054901 [arXiv:1212.1008] [INSPIRE].

  27. STAR collaboration, Identified particle elliptic flow in Au + Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. Lett. 87 (2001) 182301 [nucl-ex/0107003] [INSPIRE].

  28. STAR collaboration, Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{NN}} \) = 130 GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].

  29. PHENIX collaboration, Elliptic flow of identified hadrons in Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 91 (2003) 182301 [nucl-ex/0305013] [INSPIRE].

  30. STAR collaboration, Azimuthal anisotropy at RHIC: The First and fourth harmonics, Phys. Rev. Lett. 92 (2004) 062301 [nucl-ex/0310029] [INSPIRE].

  31. STAR collaboration, Azimuthal anisotropy in U+U and Au+Au collisions at RHIC, Phys. Rev. Lett. 115 (2015) 222301 [arXiv:1505.07812] [INSPIRE].

  32. PHOBOS collaboration, Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au + Au Collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. Lett. 104 (2010) 142301 [nucl-ex/0702036] [INSPIRE].

  33. T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey and Y. Nara, Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions, Phys. Lett. B 636 (2006) 299 [nucl-th/0511046] [INSPIRE].

  34. P. Romatschke and U. Romatschke, Viscosity Information from Relativistic Nuclear Collisions: How Perfect is the Fluid Observed at RHIC?, Phys. Rev. Lett. 99 (2007) 172301 [arXiv:0706.1522] [INSPIRE].

    ADS  Article  Google Scholar 

  35. A.K. Chaudhuri, Saturation of elliptic flow and shear viscosity, arXiv:0708.1252 [INSPIRE].

  36. H. Song, S.A. Bass, U. Heinz, T. Hirano and C. Shen, 200 A GeV Au+Au collisions serve a nearly perfect quark-gluon liquid, Phys. Rev. Lett. 106 (2011) 192301 [Erratum ibid. 109 (2012) 139904] [arXiv:1011.2783] [INSPIRE].

  37. M. Luzum and J.-Y. Ollitrault, Extracting the shear viscosity of the quark-gluon plasma from flow in ultra-central heavy-ion collisions, Nucl. Phys. A904–905 (2013) 377c [arXiv:1210.6010] [INSPIRE].

  38. C. Shen et al., The QGP shear viscosity: Elusive goal or just around the corner?, J. Phys. G 38 (2011) 124045 [arXiv:1106.6350] [INSPIRE].

    ADS  Article  Google Scholar 

  39. ALICE collaboration, Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. Lett. 117 (2016) 182301 [arXiv:1604.07663] [INSPIRE].

  40. ALICE collaboration, Systematic studies of correlations between different order flow harmonics in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. C 97 (2018) 024906 [arXiv:1709.01127] [INSPIRE].

  41. P. Bozek, Flow and interferometry in 3+1 dimensional viscous hydrodynamics, Phys. Rev. C 85 (2012) 034901 [arXiv:1110.6742] [INSPIRE].

  42. J.-B. Rose et al., Extracting the bulk viscosity of the quark-gluon plasma, Nucl. Phys. A 931 (2014) 926 [arXiv:1408.0024] [INSPIRE].

    ADS  Article  Google Scholar 

  43. S. Ryu et al., Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions, Phys. Rev. Lett. 115 (2015) 132301 [arXiv:1502.01675] [INSPIRE].

    ADS  Article  Google Scholar 

  44. S. Ryu et al., Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 034910 [arXiv:1704.04216] [INSPIRE].

  45. J.E. Bernhard, J.S. Moreland, S.A. Bass, J. Liu and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94 (2016) 024907 [arXiv:1605.03954] [INSPIRE].

  46. A. Dubla, S. Masciocchi, J.M. Pawlowski, B. Schenke, C. Shen and J. Stachel, Towards QCD-assisted hydrodynamics for heavy-ion collision phenomenology, Nucl. Phys. A 979 (2018) 251 [arXiv:1805.02985] [INSPIRE].

    ADS  Article  Google Scholar 

  47. J.E. Bernhard, J.S. Moreland and S.A. Bass, Bayesian estimation of the specific shear and bulk viscosity of quark-gluon plasma, Nature Phys. 15 (2019) 1113.

    ADS  Article  Google Scholar 

  48. B.H. Alver, C. Gombeaud, M. Luzum and J.-Y. Ollitrault, Triangular flow in hydrodynamics and transport theory, Phys. Rev. C 82 (2010) 034913 [arXiv:1007.5469] [INSPIRE].

  49. ATLAS collaboration, Measurement of the azimuthal anisotropy of charged particles produced in \( \sqrt{s_{NN}} \) = 5.02 TeV Pb+Pb collisions with the ATLAS detector, Eur. Phys. J. C 78 (2018) 997 [arXiv:1808.03951] [INSPIRE].

  50. F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions, Phys. Rev. C 85 (2012) 024908 [arXiv:1111.6538] [INSPIRE].

  51. F.G. Gardim, J. Noronha-Hostler, M. Luzum and F. Grassi, Effects of viscosity on the mapping of initial to final state in heavy ion collisions, Phys. Rev. C 91 (2015) 034902 [arXiv:1411.2574] [INSPIRE].

  52. D. Teaney and L. Yan, Event-plane correlations and hydrodynamic simulations of heavy ion collisions, Phys. Rev. C 90 (2014) 024902 [arXiv:1312.3689] [INSPIRE].

  53. ALICE collaboration, Linear and non-linear flow modes in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 773 (2017) 68 [arXiv:1705.04377] [INSPIRE].

  54. M.L. Miller, K. Reygers, S.J. Sanders and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57 (2007) 205 [nucl-ex/0701025] [INSPIRE].

  55. Z. Qiu and U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911 [arXiv:1104.0650] [INSPIRE].

  56. H.-J. Drescher and Y. Nara, Eccentricity fluctuations from the color glass condensate at RHIC and LHC, Phys. Rev. C 76 (2007) 041903 [arXiv:0707.0249] [INSPIRE].

  57. S. McDonald, C. Shen, F. Fillion-Gourdeau, S. Jeon and C. Gale, Hydrodynamic predictions for Pb+Pb collisions at 5.02 TeV, Phys. Rev. C 95 (2017) 064913 [arXiv:1609.02958] [INSPIRE].

  58. ALICE collaboration, Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 and 2.76 TeV, JHEP 07 (2018) 103 [arXiv:1804.02944] [INSPIRE].

  59. L. Yan and J.-Y. Ollitrault, ν4, ν5, ν6, ν7: nonlinear hydrodynamic response versus LHC data, Phys. Lett. B 744 (2015) 82 [arXiv:1502.02502] [INSPIRE].

  60. D. Teaney and L. Yan, Non linearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics, Phys. Rev. C 86 (2012) 044908 [arXiv:1206.1905] [INSPIRE].

  61. J. Jia and S. Mohapatra, A Method for studying initial geometry fluctuations via event plane correlations in heavy ion collisions, Eur. Phys. J. C 73 (2013) 2510 [arXiv:1203.5095] [INSPIRE].

    ADS  Article  Google Scholar 

  62. M. Luzum, Flow fluctuations and long-range correlations: elliptic flow and beyond, J. Phys. G 38 (2011) 124026 [arXiv:1107.0592] [INSPIRE].

    ADS  Article  Google Scholar 

  63. Z. Qiu and U. Heinz, Hydrodynamic event-plane correlations in Pb+Pb collisions at \( \sqrt{s} \) = 2.76ATeV, Phys. Lett. B 717 (2012) 261 [arXiv:1208.1200] [INSPIRE].

  64. ATLAS collaboration, Measurement of event-plane correlations in \( \sqrt{s_{NN}} \) = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 024905 [arXiv:1403.0489] [INSPIRE].

  65. CMS collaboration, Measurement of Higher-Order Harmonic Azimuthal Anisotropy in PbPb Collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV, Phys. Rev. C 89 (2014) 044906 [arXiv:1310.8651] [INSPIRE].

  66. M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87 (2013) 044907 [arXiv:1209.2323] [INSPIRE].

  67. ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  68. ALICE collaboration, Performance of the ALICE Experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  69. ALICE collaboration, ALICE: Physics performance report, volume I, J. Phys. G 30 (2004) 1517 [INSPIRE].

  70. ALICE collaboration, ALICE: Physics performance report, volume II, J. Phys. G 32 (2006) 1295 [INSPIRE].

  71. ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  72. ALICE collaboration, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  73. ALICE collaboration, Performance of the ALICE Time-Of-Flight detector at the LHC, 2019 JINST 14 C06023 [arXiv:1806.03825] [INSPIRE].

  74. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{NN}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  75. J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  76. ALICE collaboration, The ALICE definition of primary particles, ALICE-PUBLIC-2017-005.

  77. X.-N. Wang and M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions, Phys. Rev. D 44 (1991) 3501 [INSPIRE].

    ADS  Google Scholar 

  78. M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83 (1994) 307 [nucl-th/9502021] [INSPIRE].

  79. R. Brun et al., GEANT Detector Description and Simulation Tool, DOI [INSPIRE].

  80. A. Bilandzic, C.H. Christensen, K. Gulbrandsen, A. Hansen and Y. Zhou, Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations, Phys. Rev. C 89 (2014) 064904 [arXiv:1312.3572] [INSPIRE].

  81. H. Niemi, K.J. Eskola, R. Paatelainen and K. Tuominen, Predictions for 5.023 TeV Pb + Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 93 (2016) 014912 [arXiv:1511.04296] [INSPIRE].

  82. W. Zhao, H.-j. Xu and H. Song, Collective flow in 2.76 and 5.02 A TeV Pb+Pb collisions, Eur. Phys. J. C 77 (2017) 645 [arXiv:1703.10792] [INSPIRE].

  83. C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, The iEBE-VISHNU code package for relativistic heavy-ion collisions, Comput. Phys. Commun. 199 (2016) 61 [arXiv:1409.8164] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. R.S. Bhalerao, A. Jaiswal and S. Pal, Collective flow in event-by-event partonic transport plus hydrodynamics hybrid approach, Phys. Rev. C 92 (2015) 014903 [arXiv:1503.03862] [INSPIRE].

  85. L. Pang, Q. Wang and X.-N. Wang, Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics, Phys. Rev. C 86 (2012) 024911 [arXiv:1205.5019] [INSPIRE].

  86. H.-j. Xu, Z. Li and H. Song, High-order flow harmonics of identified hadrons in 2.76A TeV Pb + Pb collisions, Phys. Rev. C 93 (2016) 064905 [arXiv:1602.02029] [INSPIRE].

  87. J.S. Moreland, J.E. Bernhard and S.A. Bass, Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions, Phys. Rev. C 92 (2015) 011901 [arXiv:1412.4708] [INSPIRE].

  88. B. Schenke, S. Jeon and C. Gale, Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics, Phys. Rev. Lett. 106 (2011) 042301 [arXiv:1009.3244] [INSPIRE].

  89. B. Schenke, P. Tribedy and R. Venugopalan, Fluctuating Glasma initial conditions and flow in heavy ion collisions, Phys. Rev. Lett. 108 (2012) 252301 [arXiv:1202.6646] [INSPIRE].

    ADS  Article  Google Scholar 

  90. Z. Qiu, C. Shen and U. Heinz, Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at \( \sqrt{s} \) = 2.76ATeV, Phys. Lett. B 707 (2012) 151 [arXiv:1110.3033] [INSPIRE].

  91. C. Shen, U. Heinz, P. Huovinen and H. Song, Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at \( \sqrt{s_{NN}} \) = 200 GeV, Phys. Rev. C 82 (2010) 054904 [arXiv:1010.1856] [INSPIRE].

  92. C. Shen, U. Heinz, P. Huovinen and H. Song, Radial and elliptic flow in Pb+Pb collisions at the Large Hadron Collider from viscous hydrodynamic, Phys. Rev. C 84 (2011) 044903 [arXiv:1105.3226] [INSPIRE].

  93. G.S. Denicol, T. Kodama, T. Koide and P. Mota, Effect of bulk viscosity on Elliptic Flow near QCD phase transition, Phys. Rev. C 80 (2009) 064901 [arXiv:0903.3595] [INSPIRE].

  94. F. Karsch, D. Kharzeev and K. Tuchin, Universal properties of bulk viscosity near the QCD phase transition, Phys. Lett. B 663 (2008) 217 [arXiv:0711.0914] [INSPIRE].

    ADS  Article  Google Scholar 

  95. J. Noronha-Hostler, J. Noronha and C. Greiner, Transport Coefficients of Hadronic Matter near T(c), Phys. Rev. Lett. 103 (2009) 172302 [arXiv:0811.1571] [INSPIRE].

    ADS  Article  Google Scholar 

  96. E. Molnar, H. Niemi and D.H. Rischke, Numerical tests of causal relativistic dissipative fluid dynamics, Eur. Phys. J. C 65 (2010) 615 [arXiv:0907.2583] [INSPIRE].

    ADS  Article  Google Scholar 

  97. E. Shuryak, The sounds of the Little and Big Bangs, Universe 3 (2017) 75 [arXiv:1710.03776] [INSPIRE].

    ADS  Article  Google Scholar 

  98. P. Staig and E. Shuryak, The Fate of the Initial State Fluctuations in Heavy Ion Collisions. III The Second Act of Hydrodynamics, Phys. Rev. C 84 (2011) 044912 [arXiv:1105.0676] [INSPIRE].

  99. R.A. Lacey et al., Is anisotropic flow really acoustic?, arXiv:1301.0165 [INSPIRE].

  100. J. Qian, U.W. Heinz and J. Liu, Mode-coupling effects in anisotropic flow in heavy-ion collisions, Phys. Rev. C 93 (2016) 064901 [arXiv:1602.02813] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors