Abstract
In implementations of the electroweak scale cosmological relaxation mechanism proposed so far, the effect of the quantum fluctuations of the homogeneous relaxion field has been ignored. We show that they can grow during the classical cosmological evolution of the relaxion field passing through its many potential barriers. The resulting production of relaxion particles can act as an efficient stopping mechanism for the relaxion. We revisit the original relaxion proposal and determine under which conditions inflation may no longer be needed as a source of friction. We review alternative stopping mechanisms and determine in detail the allowed parameter space for each of them (whether happening before, during and after inflation), also considering and severely constraining the case of friction from electroweak gauge boson production in models with large and Higgs-independent barriers.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Change history
05 January 2021
We correct a minor point in section 3.2 of “Relaxion Fluctuations (Self-stopping Relaxion) and Overview of Relaxion Stopping Mechanisms”, <Emphasis Type="Italic">JHEP</Emphasis> <Emphasis Type="Bold">05</Emphasis> (2020) 080. Furthermore, we clarify the origin of equation (4.25). Finally, we add some plots that are of interest.
References
P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].
J.R. Espinosa et al., Cosmological Higgs-a xion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].
A. Hook and G. Marques-Tavares, Relaxation from particle production, JHEP 12 (2016) 101 [arXiv: 1607.01786] [INSPIRE].
N. Fonseca, E. Morgante and G. Servant, Higgs relaxation after inflation, JHEP 10 (2018) 020 [arXiv:1805.04543] [INSPIRE].
N. Fonseca, E. Morgante, R. Sato and G. Servant, Axion fragmentation, JHEP 04 (2020) 010 [arXiv:1911.08472] [INSPIRE].
E. Hardy, Electroweak relaxation from finite temperature, JHEP 11 (2015) 077 [arXiv: 1507 .07525] [INSPIRE].
M. Ibe, Y. Shoji and M. Suzuki, Fast-rolling relaxion, JHEP 11 (2019) 140 [arXiv: 1904.02545] [INSPIRE].
S.-J. Wang, Paper-boat relaxion, Phys. Rev. D 99 (2019) 095026 [arXiv: 1811. 06520] [INSPIRE].
K. Kadota, U. Min, M. Son and F. Ye, Cosmological relaxation from dark fermion production, JHEP 02 (2020) 135 [arXiv: 1909. 07706] [INSPIRE].
N. McLachlan, Theory and applications of Mathieu functions, Clarendon Press, Oxford U.K. (1947).
L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].
M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through electromagnetic dissipation, Phys. Rev. D 81 (2010) 043534 [arXiv:0908.4089] [INSPIRE].
D. Green, B. Horn, L. Senatore and E. Silverstein, Trapped inflation, Phys. Rev. D 80 (2009) 063533 [arXiv:0902.1006] [INSPIRE].
N. Fonseca and E. Morgante, Relaxion dark matter, Phys. Rev. D 100 (2019) 055010 [arXiv:1809.04534] [INSPIRE].
T. Flacke et al., Phenomenology of relaxion-Higgs mixing, JHEP 06 (2017) 050 [arXiv:1610.02025] [INSPIRE].
J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].
K. Choi, H. Kim and T. Sekiguchi, Dynamics of the cosmological relaxation after reheating, Phys. Rev. D 95 (2017) 075008 [arXiv:1611.08569] [INSPIRE].
A. Banerjee, H. Kim and G. Perez, Coherent relaxion dark matter, Phys. Rev. D 100 (2019) 115026 [arXiv:1810.01889] [INSPIRE].
S.A. Abel, R.S. Gupta and J. Scholtz, Out-of-the-box baryogenesis during relaxation, Phys. Rev. D 100 (2019) 015034 [arXiv:1810.05153] [INSPIRE].
T. Kobayashi, O. Seto, T. Shimomura and Y. Urakawa, Relaxion window, Mod. Phys. Lett. A 32 (2017) 1750142 [arXiv:1605.06908] [INSPIRE].
K. Choi and S.H. Im, Constraints on relaxion windows, JHEP 12 (2016) 093 [arXiv:1610.00680] [INSPIRE].
H. Beauchesne, E. Bertuzzo and G. Grilli di Cortona, Constraints on the relaxion mechanism with strongly interacting vector-fermions, JHEP 08 (2017) 093 [arXiv:1705.06325] [INSPIRE].
C. Frugiuele, E. Fuchs, G. Perez and M. Schlaffer, Relaxion and light (pseudo)scalars at the HL-LHC and lepton colliders, JHEP 10 (2018) 151 [arXiv:1807.10842] [INSPIRE].
T. Konstandin and G. Servant, Cosmological consequences of nearly conformal dynamics at the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].
M. Bauer, M. Neubert and A. Thamm, Collider probes of axion-like particles, JHEP 12 (2017) 044 [arXiv:1708.00443] [INSPIRE].
N. Craig, A. Hook and S. Kasko, The photophobic ALP, JHEP 09 (2018) 028 [arXiv:1805.06538] [INSPIRE].
M. Bauer, M. Heiles, M. Neubert and A. Thamm, Axion-like particles at future colliders, Eur. Phys. J. C 79 (2019) 74 [arXiv:1808.10323] [INSPIRE].
M.L. Bellac, Thermal field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2011).
W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, Dynamics of relaxed inflation, JHEP 02 (2018) 084 [arXiv:1706.03072] [INSPIRE].
M. Son, F. Ye and T. You, Leptogenesis in cosmological relaxation with particle production, Phys. Rev. D 99 (2019) 095016 [arXiv:1804.06599] [INSPIRE].
V. Domcke and K. Mukaida, Gauge field and fermion production during axion inflation, JCAP 11 (2018) 020 [arXiv:1806.08769] [INSPIRE].
N. Bar, K. Blum and G. D’amico, Is there a supernova bound on axions?, arXiv:1907.05020 [INSPIRE].
J. Berges, A. Chatrchyan and J. Jaeckel, Foamy dark matter from monodromies, JCAP 08 (2019) 020 [arXiv:1903.03116] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1911.08473
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Fonseca, N., Morgante, E., Sato, R. et al. Relaxion fluctuations (self-stopping relaxion) and overview of relaxion stopping mechanisms. J. High Energ. Phys. 2020, 80 (2020). https://doi.org/10.1007/JHEP05(2020)080
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2020)080