Skip to main content

Pseudo-Nambu-Goldstone dark matter from gauged U(1)B−L symmetry

A preprint version of the article is available at arXiv.

Abstract

A pseudo-Nambu-Goldstone boson (pNGB) is an attractive candidate for dark matter since the current severe limits of dark matter direct detection experiments are naturally evaded by its nature. We construct a model with pNGB dark matter based on a gauged U (1)B−L symmetry, where no adhoc global symmetry is assumed. The model keeps natural suppression mechanism for the dark matter direct detection cross section. On the other hand, the pNGB can decay through the new high scale suppressed operators. We show that the pNGB has long enough lifetime to be a dark matter in the wide range of the parameter space of the model. The thermal relic abundance of pNGB dark matter can be fit with the observed value against the constraints on the dark matter decays from the cosmic-ray observations.

References

  1. E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33, Mon. Not. Roy. Astron. Soc. 311 (2000) 441 [astro-ph/9909252] [INSPIRE].

  2. Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39 (2001) 137 [astro-ph/0010594] [INSPIRE].

  3. R. Massey, T. Kitching and J. Richard, The dark matter of gravitational lensing, Rept. Prog. Phys. 73 (2010) 086901 [arXiv:1001.1739] [INSPIRE].

  4. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  5. S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

  6. LUX collaboration, Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 251302 [arXiv:1705.03380] [INSPIRE].

  7. PandaX-II collaboration, Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302 [arXiv:1708.06917] [INSPIRE].

  8. XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].

  9. M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].

  10. S. Ipek, D. McKeen and A.E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].

  11. G. Arcadi, M. Lindner, F.S. Queiroz, W. Rodejohann and S. Vogl, Pseudoscalar Mediators: A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042 [arXiv:1711.02110] [INSPIRE].

  12. N.F. Bell, G. Busoni and I.W. Sanderson, Loop Effects in Direct Detection, JCAP 08 (2018) 017 [Erratum ibid. 01 (2019) E01] [arXiv:1803.01574] [INSPIRE].

  13. T. Abe, M. Fujiwara and J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model, JHEP 02 (2019) 028 [arXiv:1810.01039] [INSPIRE].

  14. T. Abe, M. Fujiwara, J. Hisano and Y. Shoji, Maximum value of the spin-independent cross section in the 2HDM+a, JHEP 01 (2020) 114 [arXiv:1910.09771] [INSPIRE].

  15. V. Barger, M. McCaskey and G. Shaughnessy, Complex Scalar Dark Matter vis-à-vis CoGeNT, DAMA/LIBRA and XENON100, Phys. Rev. D 82 (2010) 035019 [arXiv:1005.3328] [INSPIRE].

  16. C. Gross, O. Lebedev and T. Toma, Cancellation Mechanism for Dark-Matter-Nucleon Interaction, Phys. Rev. Lett. 119 (2017) 191801 [arXiv:1708.02253] [INSPIRE].

  17. N. Fonseca, R. Zukanovich Funchal, A. Lessa and L. Lopez-Honorez, Dark Matter Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957] [INSPIRE].

  18. I. Brivio et al., Non-linear Higgs portal to Dark Matter, JHEP 04 (2016) 141 [arXiv:1511.01099] [INSPIRE].

  19. D. Barducci et al., Monojet searches for momentum-dependent dark matter interactions, JHEP 01 (2017) 078 [arXiv:1609.07490] [INSPIRE].

  20. R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Charged Composite Scalar Dark Matter, JHEP 11 (2017) 094 [arXiv:1707.07685] [INSPIRE].

  21. R. Balkin, M. Ruhdorfer, E. Salvioni and A. Weiler, Dark matter shifts away from direct detection, JCAP 11 (2018) 050 [arXiv:1809.09106] [INSPIRE].

  22. M. Ruhdorfer, E. Salvioni and A. Weiler, A Global View of the Off-Shell Higgs Portal, SciPost Phys. 8 (2020) 027 [arXiv:1910.04170] [INSPIRE].

  23. M. Ramos, Non-Minimal Composite Dark Matter, arXiv:1912.11061 [INSPIRE].

  24. D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki and R. Santos, One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, JHEP 01 (2019) 138 [arXiv:1810.06105] [INSPIRE].

  25. K. Ishiwata and T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level, JHEP 12 (2018) 089 [arXiv:1810.08139] [INSPIRE].

  26. K. Huitu, N. Koivunen, O. Lebedev, S. Mondal and T. Toma, Probing pseudo-Goldstone dark matter at the LHC, Phys. Rev. D 100 (2019) 015009 [arXiv:1812.05952] [INSPIRE].

  27. J.M. Cline and T. Toma, Pseudo-Goldstone dark matter confronts cosmic ray and collider anomalies, Phys. Rev. D 100 (2019) 035023 [arXiv:1906.02175] [INSPIRE].

  28. C. Arina, A. Beniwal, C. Degrande, J. Heisig and A. Scaffidi, Global fit of pseudo-Nambu-Goldstone Dark Matter, arXiv:1912.04008 [INSPIRE].

  29. T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

  30. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

  31. M.G. Baring, T. Ghosh, F.S. Queiroz and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D 93 (2016) 103009 [arXiv:1510.00389] [INSPIRE].

  32. T. Bandyopadhyay, G. Bhattacharyya, D. Das and A. Raychaudhuri, Reappraisal of constraints on Z′ models from unitarity and direct searches at the LHC, Phys. Rev. D 98 (2018) 035027 [arXiv:1803.07989] [INSPIRE].

  33. V. Martín Lozano, J.M. Moreno and C.B. Park, Resonant Higgs boson pair production in the \( hh\to b\overline{b} WW\to b\overline{b}{\mathrm{\ell}}^{+}\nu {\mathrm{\ell}}^{-}\overline{\nu} \)decay channel, JHEP 08 (2015) 004 [arXiv:1501.03799] [INSPIRE].

  34. A. Falkowski, C. Gross and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361] [INSPIRE].

  35. T. Charnock, A. Avgoustidis, E.J. Copeland and A. Moss, CMB constraints on cosmic strings and superstrings, Phys. Rev. D 93 (2016) 123503 [arXiv:1603.01275] [INSPIRE].

  36. A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].

  37. A. Semenov, LanHEP — A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167 [arXiv:1412.5016] [INSPIRE].

  38. G. Bélanger, F. Boudjema, A. Goudelis, A. Pukhov and B. Zaldivar, MicrOMEGAs5.0: Freeze-in, Comput. Phys. Commun. 231 (2018) 173 [arXiv:1801.03509] [INSPIRE].

  39. CMS collaboration, Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 793 (2019) 520 [arXiv:1809.05937] [INSPIRE].

  40. ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].

  41. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

  42. C.-Y. Chen, S. Dawson and I.M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 (2015) 035015 [arXiv:1410.5488] [INSPIRE].

  43. Fermi-LAT and DES collaborations, Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].

  44. CTA collaboration, Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA), PoS(ICRC2015)1203 [arXiv:1508.06128] [INSPIRE].

  45. X. Bai et al., The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper, arXiv:1905.02773 [INSPIRE].

  46. D.-Z. He, X.-J. Bi, S.-J. Lin, P.-F. Yin and X. Zhang, Expectation on LHAASO sensitivity to decaying dark matter signatures from dwarf galaxies gamma-ray emission, arXiv:1910.05017 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Abe.

Additional information

ArXiv ePrint: 2001.03954

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abe, Y., Toma, T. & Tsumura, K. Pseudo-Nambu-Goldstone dark matter from gauged U(1)B−L symmetry. J. High Energ. Phys. 2020, 57 (2020). https://doi.org/10.1007/JHEP05(2020)057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2020)057

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM
  • Gauge Symmetry