Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Replica wormholes and the entropy of Hawking radiation

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 05 May 2020
  • volume 2020, Article number: 13 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Replica wormholes and the entropy of Hawking radiation
Download PDF
  • Ahmed Almheiri1,
  • Thomas Hartman2,
  • Juan Maldacena1,
  • Edgar Shaghoulian  ORCID: orcid.org/0000-0003-4529-39382 &
  • …
  • Amirhossein Tajdini2 
  • 3849 Accesses

  • 402 Citations

  • 77 Altmetric

  • 9 Mentions

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

The information paradox can be realized in anti-de Sitter spacetime joined to a Minkowski region. In this setting, we show that the large discrepancy between the von Neumann entropy as calculated by Hawking and the requirements of unitarity is fixed by including new saddles in the gravitational path integral. These saddles arise in the replica method as complexified wormholes connecting different copies of the black hole. As the replica number n → 1, the presence of these wormholes leads to the island rule for the computation of the fine-grained gravitational entropy. We discuss these replica wormholes explicitly in two-dimensional Jackiw-Teitelboim gravity coupled to matter.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S.W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14 (1976) 2460 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743 [hep-th/9306083] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  3. D.N. Page, Time dependence of Hawking radiation entropy, JCAP 09 (2013) 028 [arXiv:1301.4995] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. G. Penington, Entanglement wedge reconstruction and the information paradox, arXiv:1905.08255 [INSPIRE].

  5. A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, JHEP 12 (2019) 063 [arXiv:1905.08762] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  6. A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. T.G. Mertens, Towards black hole evaporation in Jackiw-Teitelboim gravity, JHEP 07 (2019) 097 [arXiv:1903.10485] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  8. C. Akers, S. Leichenauer and A. Levine, Large breakdowns of entanglement wedge reconstruction, Phys. Rev. D 100 (2019) 126006 [arXiv:1908.03975] [INSPIRE].

    ADS  Google Scholar 

  9. U. Moitra, S.K. Sake, S.P. Trivedi and V. Vishal, Jackiw-Teitelboim model coupled to conformal matter in the semi-classical limit, JHEP 04 (2020) 199 [arXiv:1908.08523] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions, arXiv:1911.09666 [INSPIRE].

  11. Z. Fu and D. Marolf, Bag-of-gold spacetimes, Euclidean wormholes and inflation from domain walls in AdS/CFT, JHEP 11 (2019) 040 [arXiv:1909.02505] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  12. P. Zhang, Evaporation dynamics of the Sachdev-Ye-Kitaev model, Phys. Rev. B 100 (2019) 245104 [arXiv:1909.10637] [INSPIRE].

    ADS  Google Scholar 

  13. C. Akers, N. Engelhardt and D. Harlow, Simple holographic models of black hole evaporation, arXiv:1910.00972 [INSPIRE].

  14. A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, arXiv:1910.11077 [INSPIRE].

  15. M. Rozali et al., Information radiation in BCFT models of black holes, arXiv:1910.12836 [INSPIRE].

  16. H.Z. Chen et al., Information flow in black hole evaporation, JHEP 03 (2020) 152 [arXiv:1911.03402] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. R. Bousso and M. Tomašević, Unitarity from a smooth horizon?, arXiv:1911.06305 [INSPIRE].

  18. D.L. Jafferis and D.K. Kolchmeyer, Entanglement entropy in Jackiw-Teitelboim gravity, arXiv:1911.10663 [INSPIRE].

  19. A. Blommaert, T.G. Mertens and H. Verschelde, Eigenbranes in Jackiw-Teitelboim gravity, arXiv:1911.11603 [INSPIRE].

  20. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

    ADS  MATH  Google Scholar 

  23. N. Engelhardt and A.C. Wall, Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime, JHEP 01 (2015) 073 [arXiv:1408.3203] [INSPIRE].

    ADS  Google Scholar 

  24. S.D. Mathur, What is the dual of two entangled CFTs?, arXiv:1402.6378 [INSPIRE].

  25. R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].

    ADS  Google Scholar 

  26. C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. 126B (1983) 41 [INSPIRE].

    ADS  Google Scholar 

  27. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].

    ADS  MATH  Google Scholar 

  28. A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. X. Dong and A. Lewkowycz, Entropy, extremality, Euclidean variations and the equations of motion, JHEP 01 (2018) 081 [arXiv:1705.08453] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  31. G. Penington, S.H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, arXiv:1911.11977 [INSPIRE].

  32. J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  33. P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].

  34. P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].

  35. P. Saad, Late time correlation functions, baby universes and ETH in JT gravity, arXiv:1910.10311 [INSPIRE].

  36. J.V. Rocha, Evaporation of large black holes in AdS: coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  37. J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [hep-th/0011156] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  40. J. Maldacena, A. Milekhin and F. Popov, Traversable wormholes in four dimensions, arXiv:1807.04726 [INSPIRE].

  41. T.M. Fiola, J. Preskill, A. Strominger and S.P. Trivedi, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D 50 (1994) 3987 [hep-th/9403137] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  43. H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  44. X. Dong, Holographic entanglement entropy for general higher derivative gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].

    ADS  MATH  Google Scholar 

  45. E. Sharon and D. Mumford, 2D-shape analysis using conformal mapping, Int. J. Computer Vision 70 (2006) 55.

    Google Scholar 

  46. K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].

    ADS  Google Scholar 

  47. J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].

  48. P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

    MATH  Google Scholar 

  49. H. Casini, C.D. Fosco and M. Huerta, Entanglement and alpha entropies for a massive Dirac field in two dimensions, J. Stat. Mech. 0507 (2005) P07007 [cond-mat/0505563] [INSPIRE].

  50. P. Hayden and G. Penington, Learning the alpha-bits of black holes, JHEP 12 (2019) 007 [arXiv:1807.06041] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  51. P. Hayden and G. Penington, Approximate quantum error correction revisited: introducing the alpha-bit, arXiv:1706.09434.

  52. D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  53. X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. S.W. Hawking, Quantum coherence down the wormhole, Phys. Lett. B 195 (1987) 337 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  57. G.V. Lavrelashvili, V.A. Rubakov and P.G. Tinyakov, Disruption of quantum coherence upon a change in spatial topology in quantum gravity, JETP Lett. 46 (1987) 167 [INSPIRE].

    ADS  Google Scholar 

  58. S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].

    ADS  Google Scholar 

  59. S.R. Coleman, Black holes as red herrings: topological fluctuations and the loss of quantum coherence, Nucl. Phys. B 307 (1988) 867 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  60. S.B. Giddings and A. Strominger, Loss of incoherence and determination of coupling constants in quantum gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. J. Polchinski and A. Strominger, A possible resolution of the black hole information puzzle, Phys. Rev. D 50 (1994) 7403 [hep-th/9407008] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  62. T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49 [arXiv:1411.0690] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Institute for Advanced Study, Princeton, New Jersey, USA

    Ahmed Almheiri & Juan Maldacena

  2. Department of Physics, Cornell University, Ithaca, New York, USA

    Thomas Hartman, Edgar Shaghoulian & Amirhossein Tajdini

Authors
  1. Ahmed Almheiri
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Thomas Hartman
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Juan Maldacena
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Edgar Shaghoulian
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Amirhossein Tajdini
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Edgar Shaghoulian.

Additional information

ArXiv ePrint: 1911.12333

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almheiri, A., Hartman, T., Maldacena, J. et al. Replica wormholes and the entropy of Hawking radiation. J. High Energ. Phys. 2020, 13 (2020). https://doi.org/10.1007/JHEP05(2020)013

Download citation

  • Received: 17 February 2020

  • Accepted: 19 April 2020

  • Published: 05 May 2020

  • DOI: https://doi.org/10.1007/JHEP05(2020)013

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • 2D Gravity
  • Black Holes
  • Models of Quantum Gravity

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature