Advertisement

The quantum gravity dynamics of near extremal black holes

  • Zhenbin YangEmail author
Open Access
Regular Article - Theoretical Physics
  • 61 Downloads

Abstract

We study the quantum effects of Near-Extremal black holes near their horizons. The gravitational dynamics in such backgrounds are closely connected to a particle in AdS2 with constant electric field. We use this picture to solve the theory exactly. We will give a formula to calculate all correlation functions with quantum gravity backreactions as well as the exact Wheeler-DeWitt wavefunction. Using the WdW wavefunction, we investigate the complexity growth in quantum gravity.

Keywords

2D Gravity AdS-CFT Correspondence Black Holes Models of Quantum Gravity 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A. Strominger, Les Houches lectures on black holes, in NATO Advanced Study Institute: Les Houches Summer School, Session 62: Fluctuating Geometries in Statistical Mechanics and Field Theory Les Houches, France, August 2 - September 9, 1994, hep-th/9501071 [INSPIRE].
  2. [2]
    R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
  3. [3]
    C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. 126B (1983) 41 [INSPIRE].
  4. [4]
    D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE].
  5. [5]
    D. Bagrets, A. Altland and A. Kamenev, Power-law out of time order correlation functions in the SYK model, Nucl. Phys. B 921 (2017) 727 [arXiv:1702.08902] [INSPIRE].
  6. [6]
    D. Stanford and E. Witten, Fermionic Localization of the Schwarzian Theory, JHEP 10 (2017) 008 [arXiv:1703.04612] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the Conformal Bootstrap, JHEP 08 (2017) 136 [arXiv:1705.08408] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    A. Kitaev and S.J. Suh, Statistical mechanics of a two-dimensional black hole, arXiv:1808.07032 [INSPIRE].
  9. [9]
    A. Kitaev, Discussion section, in proceedings of the Workshop on the Chaos, the SYK Model and AdS 2, Princeton, New Jersey, U.S.A., October 17, 2016.Google Scholar
  10. [10]
    D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity, arXiv:1804.01081 [INSPIRE].
  11. [11]
    L. Susskind, Black Holes and Complexity Classes, arXiv:1802.02175 [INSPIRE].
  12. [12]
    A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
  13. [13]
    J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE].
  14. [14]
    A.M. Polyakov, Gauge Fields and Strings, Contemp. Concepts Phys. 3 (1987) 1.ADSMathSciNetGoogle Scholar
  15. [15]
    A. Comtet, On the Landau Levels on the Hyperbolic Plane, Annals Phys. 173 (1987) 185 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    C.M. Bender, Introduction to PT-Symmetric Quantum Theory, Contemp. Phys. 46 (2005) 277 [quant-ph/0501052] [INSPIRE].
  17. [17]
    A. Comtet and P.J. Houston, Effective Action on the Hyperbolic Plane in a Constant External Field, J. Math. Phys. 26 (1985) 185 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    B. Pioline and J. Troost, Schwinger pair production in AdS 2, JHEP 03 (2005) 043 [hep-th/0501169] [INSPIRE].
  19. [19]
    J. Lin, Entanglement entropy in Jackiw-Teitelboim Gravity, arXiv:1807.06575 [INSPIRE].
  20. [20]
    K. Jensen, Chaos in AdS 2 Holography, Phys. Rev. Lett. 117 (2016) 111601 [arXiv:1605.06098] [INSPIRE].
  21. [21]
    J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS 2 backreaction and holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].
  22. [22]
    L. Iliesiu, S. Pufu, H. Verlinde and Y. Wang, to appear.Google Scholar
  23. [23]
    T.G. Mertens, The Schwarzian theoryorigins, JHEP 05 (2018) 036 [arXiv:1801.09605] [INSPIRE].
  24. [24]
    A. Blommaert, T.G. Mertens and H. Verschelde, The Schwarzian TheoryA Wilson Line Perspective, JHEP 12 (2018) 022 [arXiv:1806.07765] [INSPIRE].
  25. [25]
    P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE].
  26. [26]
    D. Louis-Martinez, J. Gegenberg and G. Kunstatter, Exact Dirac quantization of all 2-D dilaton gravity theories, Phys. Lett. B 321 (1994) 193 [gr-qc/9309018] [INSPIRE].
  27. [27]
    E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303 [hep-th/9204083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Cordes, G.W. Moore and S. Ramgoolam, Lectures on 2-D Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. Proc. Suppl. 41 (1995) 184 [hep-th/9411210] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A.L. Fitzpatrick, J. Kaplan, D. Li and J. Wang, On information loss in AdS 3 /CFT 2, JHEP 05 (2016) 109 [arXiv:1603.08925] [INSPIRE].
  30. [30]
    T. Faulkner and H. Wang, Probing beyond ETH at large c, JHEP 06 (2018) 123 [arXiv:1712.03464] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90 (2014) 126007 [arXiv:1406.2678] [INSPIRE].
  32. [32]
    A.R. Brown, D.A. Roberts, L. Susskind, B. Swingle and Y. Zhao, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116 (2016) 191301 [arXiv:1509.07876] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A.R. Brown, H. Gharibyan, A. Streicher, L. Susskind, L. Thorlacius and Y. Zhao, Falling Toward Charged Black Holes, Phys. Rev. D 98 (2018) 126016 [arXiv:1804.04156] [INSPIRE].
  34. [34]
    J. Preskill, P. Schwarz, A.D. Shapere, S. Trivedi and F. Wilczek, Limitations on the statistical description of black holes, Mod. Phys. Lett. A 6 (1991) 2353 [INSPIRE].
  35. [35]
    J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE].
  36. [36]
    A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP 05 (2018) 183 [arXiv:1711.08467] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    E. Witten, An SYK-Like Model Without Disorder, arXiv:1610.09758 [INSPIRE].
  38. [38]
    I.R. Klebanov and G. Tarnopolsky, Uncolored random tensors, melon diagrams and the Sachdev-Ye-Kitaev models, Phys. Rev. D 95 (2017) 046004 [arXiv:1611.08915] [INSPIRE].
  39. [39]
    B. Kobrin and N. Yao, private communication.Google Scholar
  40. [40]
    T.M. Fiola, J. Preskill, A. Strominger and S.P. Trivedi, Black hole thermodynamics and information loss in two-dimensions, Phys. Rev. D 50 (1994) 3987 [hep-th/9403137] [INSPIRE].
  41. [41]
    P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    L. Susskind and Y. Zhao, Teleportation through the wormhole, Phys. Rev. D 98 (2018) 046016 [arXiv:1707.04354] [INSPIRE].
  44. [44]
    B. Yoshida and A. Kitaev, Efficient decoding for the Hayden-Preskill protocol, arXiv:1710.03363 [INSPIRE].
  45. [45]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  46. [46]
    N. Callebaut and H. Verlinde, Entanglement Dynamics in 2D CFT with Boundary: Entropic origin of JT gravity and Schwarzian QM, JHEP 05 (2019) 045 [arXiv:1808.05583] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.H. Chamseddine, A study of noncritical strings in arbitrary dimensions, Nucl. Phys. B 368 (1992) 98 [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.Jadwin Hall, Princeton UniversityPrincetonU.S.A.

Personalised recommendations