Skip to main content

CP violation in \( {\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu } \)

A preprint version of the article is available at arXiv.

Abstract

In order to explain the observed anomalies in the measurements of \( {R}_{D^{\left(\ast \right)}} \) and RJ/ψ, a variety of new-physics (NP) models that contribute to \( b\to c{\tau}^{-}\overline{\nu} \) have been proposed. In this paper, we show how CP-violating observables can be used to distinguish these NP models. Because \( {\overrightarrow{p}}_{\tau } \) cannot be measured (the decay products of the τ include the undetected ντ), obtaining the angular distribution of \( {\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau } \) is problematic. Instead, we focus here on \( {\overline{B}}^0\to {D}^{\ast +}\left(\to {D}^0{\pi}^{+}\right){\mu}^{-}{\overline{\nu}}_{\mu } \). This process may also receive contributions from the same NP, and LHCb intends to measure the CP-violating angular asymmetries in this decay. There are two classes of NP models that contribute to \( b\to c{\mu}^{-}{\overline{\nu}}_{{}_{\mu }} \). These involve (i) a W (two types) or (ii) a leptoquark (LQ) (six types). The most popular NP models predict no CP-violating effects, so the measurement of nonzero CP-violating asymmetries would rule them out. Furthermore these measurements allow one to distinguish the W and LQ models, and to differentiate among several LQ models.

References

  1. BaBar collaboration, Measurement of an excess of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) decays and implications for charged Higgs bosons, Phys. Rev. D 88 (2013) 072012 [arXiv:1303.0571] [INSPIRE].

  2. Belle collaboration, Measurement of the branching ratio of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) relative to \( \overline{B}\to {D}^{\left(\ast \right)}{\ell}^{-}{\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014 [arXiv:1507.03233] [INSPIRE].

  3. LHCb collaboration, Measurement of the ratio of branching fractions \( \mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\tau}^{-}{\overline{\nu}}_{\tau}\right)/\mathrm{\mathcal{B}}\left({\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu}\right) \), Phys. Rev. Lett. 115 (2015) 111803 [Erratum ibid. 115 (2015)159901] [arXiv:1506.08614] [INSPIRE].

  4. A. Abdesselam et al., Measurement of the τ lepton polarization in the decay \( \overline{B}\to {D}^{\ast }{\tau}^{-}{\overline{\nu}}_{\tau } \), arXiv:1608.06391 [INSPIRE].

  5. LHCb collaboration, Measurement of the ratio of branching fractions ℬ(B + c  → J/ψτ + ν τ)/ℬ(B + c  → J/ψμ + ν μ), Phys. Rev. Lett. 120 (2018) 121801 [arXiv:1711.05623] [INSPIRE].

  6. Belle collaboration, Precise determination of the CKM matrix element |V cb| with \( {\overline{B}}^0\to {D}^{\ast +}{\ell}^{-}\ {\overline{\nu}}_{\ell } \) decays with hadronic tagging at Belle, arXiv:1702.01521 [INSPIRE].

  7. F.U. Bernlochner, Z. Ligeti, M. Papucci and D.J. Robinson, Combined analysis of semileptonic B decays to D and D : R(D (∗)), |V cb| and new physics, Phys. Rev. D 95 (2017) 115008 [arXiv:1703.05330] [INSPIRE].

  8. D. Bigi, P. Gambino and S. Schacht, R(D ), |V cb| and the heavy quark symmetry relations between form factors, JHEP 11 (2017) 061 [arXiv:1707.09509] [INSPIRE].

  9. S. Jaiswal, S. Nandi and S.K. Patra, Extraction of |V cb| from BD (∗) ℓν and the standard model predictions of R(D (∗)), JHEP 12 (2017) 060 [arXiv:1707.09977] [INSPIRE].

  10. R. Watanabe, New physics effect on \( {B}_c\to J/\psi \tau \overline{\nu} \) in relation to the \( {R}_{D^{\left(\ast \right)}} \) anomaly, Phys. Lett. B 776 (2018) 5 [arXiv:1709.08644] [INSPIRE].

  11. S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].

    ADS  Article  Google Scholar 

  12. A. Datta, M. Duraisamy and D. Ghosh, Diagnosing new physics in bcτ ν τ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].

  13. M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

  14. P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in \( \overline{B}\to {D}^{\left(\ast \right)}\tau {\overline{\nu}}_{\tau } \) decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].

  15. M. Duraisamy and A. Datta, The full \( B\to {D}^{\left(\ast \right)}\tau {\overline{\nu}}_{\tau } \) angular distribution and CP-violating triple products, JHEP 09 (2013) 059 [arXiv:1302.7031] [INSPIRE].

  16. M. Freytsis, Z. Ligeti and J.T. Ruderman, Flavor models for \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 92 (2015) 054018 [arXiv:1506.08896] [INSPIRE].

  17. D. Bardhan, P. Byakti and D. Ghosh, A closer look at the R D and \( {R}_{D^{\ast }} \) anomalies, JHEP 01 (2017) 125 [arXiv:1610.03038] [INSPIRE].

  18. S. Bhattacharya, S. Nandi and S.K. Patra, Looking for possible new physics in BD (∗) τ ν τ in light of recent data, Phys. Rev. D 95 (2017) 075012 [arXiv:1611.04605] [INSPIRE].

  19. R. Dutta, Exploring R D , R Dand R J anomalies, arXiv:1710.00351 [INSPIRE].

  20. A.K. Alok et al., New physics solutions for R D and \( {R}_{D^{\ast }} \), JHEP 09 (2018) 152 [arXiv:1710.04127] [INSPIRE].

  21. Z.-R. Huang et al., Footprints of new physics in bcτ ν transitions, Phys. Rev. D 98 (2018) 095018 [arXiv:1808.03565] [INSPIRE].

  22. A. Crivellin, C. Greub and A. Kokulu, Explaining BDτ ν, BD τ ν and Bτ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

  23. A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in BD (∗) τ ν τ and Bτν τ decays, JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].

  24. X.-G. He and G. Valencia, B decays with τ leptons in nonuniversal left-right models, Phys. Rev. D 87 (2013) 014014 [arXiv:1211.0348] [INSPIRE].

  25. P. Ko, Y. Omura and C. Yu, BD (∗) τ ν and Bτ ν in chiral U(1)’ models with flavored multi Higgs doublets, JHEP 03 (2013) 151 [arXiv:1212.4607] [INSPIRE].

  26. I. Doršner, S. Fajfer, N. Košnik and I. Nišandžić, Minimally flavored colored scalar in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) and the mass matrices constraints, JHEP 11 (2013) 084 [arXiv:1306.6493] [INSPIRE].

  27. Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].

  28. A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].

    ADS  Article  Google Scholar 

  29. A. Crivellin, J. Heeck and P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model, Phys. Rev. Lett. 116 (2016) 081801 [arXiv:1507.07567] [INSPIRE].

  30. B. Dumont, K. Nishiwaki and R. Watanabe, LHC constraints and prospects for S 1 scalar leptoquark explaining the \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \) anomaly, Phys. Rev. D 94 (2016) 034001 [arXiv:1603.05248] [INSPIRE].

  31. S.M. Boucenna et al., Non-abelian gauge extensions for B-decay anomalies, Phys. Lett. B 760 (2016) 214 [arXiv:1604.03088] [INSPIRE].

  32. S.M. Boucenna et al., Phenomenology of an SU(2) × SU(2) × U (1) model with lepton-flavour non-universality, JHEP 12 (2016) 059 [arXiv:1608.01349] [INSPIRE].

  33. B. Bhattacharya et al., Simultaneous explanation of the R K and \( {R}_{D^{\left(*\right)}} \) puzzles: a model analysis, JHEP 01 (2017) 015 [arXiv:1609.09078] [INSPIRE].

  34. R. Alonso, B. Grinstein and J. Martin Camalich, Lifetime of B c constrains explanations for anomalies in \( B\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. Lett. 118 (2017) 081802 [arXiv:1611.06676] [INSPIRE].

  35. A. Celis, M. Jung, X.-Q. Li and A. Pich, Scalar contributions to bc(u)τ ν transitions, Phys. Lett. B 771 (2017) 168 [arXiv:1612.07757] [INSPIRE].

  36. M. Wei and Y. Chong-Xing, Charged Higgs bosons from the 3-3-1 models and the ℛ(D (∗)) anomalies, Phys. Rev. D 95 (2017) 035040 [arXiv:1702.01255] [INSPIRE].

  37. W. Altmannshofer, P.S. Bhupal Dev and A. Soni, \( {R}_{D^{\left(\ast \right)}} \) anomaly: a possible hint for natural supersymmetry with R-parity violation, Phys. Rev. D 96 (2017) 095010 [arXiv:1704.06659] [INSPIRE].

  38. D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].

    ADS  Article  Google Scholar 

  39. S. Iguro and K. Tobe, R(D (∗)) in a general two Higgs doublet model, Nucl. Phys. B 925 (2017) 560 [arXiv:1708.06176] [INSPIRE].

  40. X.-G. He and G. Valencia, Lepton universality violation and right-handed currents in bcτν, Phys. Lett. B 779 (2018) 52 [arXiv:1711.09525] [INSPIRE].

  41. A. Biswas, D.K. Ghosh, S.K. Patra and A. Shaw, bcℓν anomalies in light of extended scalar sectors, arXiv:1801.03375 [INSPIRE].

  42. P. Asadi, M.R. Buckley and D. Shih, Its all right(-handed neutrinos): a new W model for the \( {R}_{{}^D}^{\left(*\right)} \) anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].

  43. A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D (∗)) from W and right-handed neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].

  44. A. Azatov et al., Anatomy of bcτ ν anomalies, JHEP 11 (2018) 187 [arXiv:1805.03209] [INSPIRE].

  45. R. Martinez, C.F. Sierra and G. Valencia, Beyond ℛ(D (∗)) with the general type-III 2HDM for bcτ ν, Phys. Rev. D 98 (2018) 115012 [arXiv:1805.04098] [INSPIRE].

  46. S. Fraser, C. Marzo, L. Marzola, M. Raidal and C. Spethmann, Towards a viable scalar interpretation of \( {R}_{D^{\left(\ast \right)}} \), Phys. Rev. D 98 (2018) 035016 [arXiv:1805.08189] [INSPIRE].

  47. J. Kumar, D. London and R. Watanabe, Combined explanations of the b + μ and \( b\to c{\tau}^{-}\overline{\nu} \) anomalies: a general model analysis, Phys. Rev. D 99 (2019) 015007 [arXiv:1806.07403] [INSPIRE].

  48. D.J. Robinson, B. Shakya and J. Zupan, Right-handed neutrinos and R(D (∗)), JHEP 02 (2019) 119 [arXiv:1807.04753] [INSPIRE].

  49. C. Marzo, L. Marzola and M. Raidal, Common explanation to the \( {R}_{K^{\left(\ast \right)}} \) , \( {R}_{D^{\left(\ast \right)}} \) and ϵ /ϵ anomalies in a 3HDM+ν R and connections to neutrino physics, arXiv:1901.08290.

  50. Y. Sakaki and H. Tanaka, Constraints on the charged scalar effects using the forward-backward asymmetry on B D (∗) τ ν τ , Phys. Rev. D 87 (2013) 054002 [arXiv:1205.4908] [INSPIRE].

  51. M. Duraisamy, P. Sharma and A. Datta, Azimuthal BD τ ν¯τ angular distribution with tensor operators, Phys. Rev. D 90 (2014) 074013 [arXiv:1405.3719] [INSPIRE].

  52. Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Probing new physics with q 2 distributions in \( \overline{B}\to {D}^{\left(\ast \right)}\tau \overline{\nu} \), Phys. Rev. D 91 (2015) 114028 [arXiv:1412.3761] [INSPIRE].

  53. S. Bhattacharya, S. Nandi and S.K. Patra, Optimal-observable analysis of possible new physics in \( \overline{B}\to {D}^{\left(\ast \right)}\tau {\overline{\nu}}_{\tau } \) , Phys. Rev. D 93 (2016) 034011 [arXiv:1509.07259] [INSPIRE].

  54. R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic distributions of \( \overline{B}\to {D}^{\left(\ast \right)}{\tau}^{-}\left(\to {\ell}^{-}{\overline{\nu}}_{\ell }{\nu}_{\tau}\right){\overline{\nu}}_{\tau } \), Phys. Rev. D 94 (2016) 094021 [arXiv:1602.07671] [INSPIRE].

  55. A.K. Alok, D. Kumar, S. Kumbhakar and S.U. Sankar, D polarization as a probe to discriminate new physics in \( \overline{B}\to {D}^{\ast}\tau \overline{\nu} \), Phys. Rev. D 95 (2017) 115038 [arXiv:1606.03164] [INSPIRE].

  56. Z. Ligeti, M. Papucci and D.J. Robinson, New physics in the visible final states of BD (∗) τν, JHEP 01 (2017) 083 [arXiv:1610.02045] [INSPIRE].

  57. M.A. Ivanov, J.G. Körner and C.-T. Tran, Probing new physics in \( {\overline{B}}^0\to {D}^{\left(\ast \right)}{\tau}^{-}{\overline{\nu}}_{\tau } \) using the longitudinal, transverse and normal polarization components of the τ lepton, Phys. Rev. D 95 (2017) 036021 [arXiv:1701.02937] [INSPIRE].

  58. D. Aloni, A. Efrati, Y. Grossman and Y. Nir, Y and ψ leptonic decays as probes of solutions to the R (*) D puzzle, JHEP 06 (2017) 019 [arXiv:1702.07356] [INSPIRE].

  59. A.K. Alok, D. Kumar, S. Kumbhakar and S. Uma Sankar, Resolution of \( {R}_D/{R}_{D^{\ast }} \) puzzle, Phys. Lett. B 784 (2018) 16 [arXiv:1804.08078] [INSPIRE].

  60. D. Aloni, Y. Grossman and A. Soffer, Measuring CP-violation in \( b\to c{\tau}^{-}{\overline{\nu}}_{\tau } \) using excited charm mesons, Phys. Rev. D 98 (2018) 035022 [arXiv:1806.04146] [INSPIRE].

  61. P. Asadi, M.R. Buckley and D. Shih, Asymmetry observables and the origin of \( {R}_{D^{\left(\ast \right)}} \) anomalies, Phys. Rev. D 99 (2019) 035015 [arXiv:1810.06597] [INSPIRE].

  62. M. Blanke et al., Impact of polarization observables and B cτ ν on new physics explanations of the bcτ ν anomaly, Phys. Rev. D 99 (2019) 075006 [arXiv:1811.09603] [INSPIRE].

  63. S. Iguro, T. Kitahara, Y. Omura, R. Watanabe and K. Yamamoto, D polarization vs. \( {R}_{D^{\left(\ast \right)}} \) anomalies in the leptoquark models, JHEP 02 (2019) 194 [arXiv:1811.08899] [INSPIRE].

  64. P. Colangelo and F. De Fazio, Scrutinizing \( \overline{B}\to {D}^{\ast}\left(D\pi \right)\ {\ell}^{-}{\overline{\nu}}_{\ell } \) and \( \overline{B}\to {D}^{\ast}\left(D\gamma \right)\ {\ell}^{-}{\overline{\nu}}_{\ell } \) in search of new physics footprints, JHEP 06 (2018) 082 [arXiv:1801.10468] [INSPIRE].

  65. A.K. Alok et al., New physics in b + μ : distinguishing models through CP-violating effects, Phys. Rev. D 96 (2017) 015034 [arXiv:1703.09247] [INSPIRE].

  66. A. Datta and D. London, Measuring new physics parameters in B penguin decays, Phys. Lett. B 595 (2004) 453 [hep-ph/0404130] [INSPIRE].

  67. K. Hagiwara, M.M. Nojiri and Y. Sakaki, CP violation in BDτ ν τ using multipion τ decays, Phys. Rev. D 89 (2014) 094009 [arXiv:1403.5892] [INSPIRE].

  68. R. Alonso, J. Martin Camalich and S. Westhoff, τ properties in BDτ ν from visible final-state kinematics, Phys. Rev. D 95 (2017) 093006 [arXiv:1702.02773] [INSPIRE].

  69. D. Marangotto, Angular and CP-violation analyses of \( \overline{B}\to {D}^{\ast +}{l}^{-}{\overline{\nu}}_l \) decays at hadron collider experiments, arXiv:1812.08144 [INSPIRE].

  70. W. Altmannshofer et al., Symmetries and asymmetries of BK μ + μ decays in the standard model and beyond, JHEP 01 (2009) 019 [arXiv:0811.1214] [INSPIRE].

  71. B. Dey, Angular analyses of exclusive \( \overline{B}\to X{\ell}_1{\ell}_2 \) with complex helicity amplitudes, Phys. Rev. D 92 (2015) 033013 [arXiv:1505.02873] [INSPIRE].

  72. C. Bobeth, G. Hiller and D. van Dyk, General analysis of \( \overline{B}\to {\overline{K}}^{\left(\ast \right)}{\ell}^{+}{\ell}^{-} \) decays at low recoil, Phys. Rev. D 87 (2013) 034016 [arXiv:1212.2321] [INSPIRE].

  73. A. Datta and D. London, Triple-product correlations in BV 1 V 2 decays and new physics, Int. J. Mod. Phys. A 19 (2004) 2505 [hep-ph/0303159] [INSPIRE].

  74. M. Gronau and J.L. Rosner, Triple product asymmetries in K, D (s) and B (s) decays, Phys. Rev. D 84 (2011) 096013 [arXiv:1107.1232] [INSPIRE].

  75. A. Crivellin, D. Müller, A. Signer and Y. Ulrich, Correlating lepton flavor universality violation in B decays with μeγ using leptoquarks, Phys. Rev. D 97 (2018) 015019 [arXiv:1706.08511] [INSPIRE].

  76. Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001.

  77. B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous explanation of the R K and R(D (∗)) puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].

  78. A.K. Alok et al., New physics in b + μ after the measurement of \( {R}_{K^{\ast }} \), Phys. Rev. D 96 (2017) 095009 [arXiv:1704.07397] [INSPIRE].

  79. M. Beneke and T. Feldmann, Symmetry breaking corrections to heavy to light B meson form-factors at large recoil, Nucl. Phys. B 592 (2001) 3 [hep-ph/0008255] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhubanjyoti Bhattacharya.

Additional information

ArXiv ePrint: 1903.02567

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, B., Datta, A., Kamali, S. et al. CP violation in \( {\overline{B}}^0\to {D}^{\ast +}{\mu}^{-}{\overline{\nu}}_{\mu } \). J. High Energ. Phys. 2019, 191 (2019). https://doi.org/10.1007/JHEP05(2019)191

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2019)191

Keywords

  • Beyond Standard Model
  • CP violation