Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Decomposition of Feynman integrals on the maximal cut by intersection numbers
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Decomposition of Feynman integrals by multivariate intersection numbers

02 March 2021

Hjalte Frellesvig, Federico Gasparotto, … Sebastian Mizera

Feynman integrals and intersection theory

21 February 2019

Pierpaolo Mastrolia & Sebastian Mizera

The diagrammatic coaction beyond one loop

15 October 2021

Samuel Abreu, Ruth Britto, … James Matthew

Baikov representations, intersection theory, and canonical Feynman integrals

11 July 2022

Jiaqi Chen, Xuhang Jiang, … Li Lin Yang

Asymptotic analysis of Feynman diagrams and their maximal cuts

08 December 2020

B. Ananthanarayan, Abhijit B. Das & Ratan Sarkar

Duals of Feynman Integrals. Part II. Generalized unitarity

13 April 2022

Simon Caron-Huot & Andrzej Pokraka

Reduction of Feynman integrals in the parametric representation III: integrals with cuts

21 December 2020

Wen Chen

Cutkosky’s theorem for massive one-loop Feynman integrals: part 1

21 November 2022

Maximilian Mühlbauer

Feynman integrals as A-hypergeometric functions

16 December 2019

Leonardo de la Cruz

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 24 May 2019

Decomposition of Feynman integrals on the maximal cut by intersection numbers

  • Hjalte Frellesvig1,2,
  • Federico Gasparotto1,2,
  • Stefano Laporta1,2,
  • Manoj K. Mandal1,2,
  • Pierpaolo Mastrolia  ORCID: orcid.org/0000-0001-9711-77981,2,
  • Luca Mattiazzi2,1 &
  • …
  • Sebastian Mizera3,4 

Journal of High Energy Physics volume 2019, Article number: 153 (2019) Cite this article

  • 904 Accesses

  • 60 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We elaborate on the recent idea of a direct decomposition of Feynman integrals onto a basis of master integrals on maximal cuts using intersection numbers. We begin by showing an application of the method to the derivation of contiguity relations for special functions, such as the Euler beta function, the Gauss 2F1 hypergeometric function, and the Appell F1 function. Then, we apply the new method to decompose Feynman integrals whose maximal cuts admit 1-form integral representations, including examples that have from two to an arbitrary number of loops, and/or from zero to an arbitrary number of legs. Direct constructions of differential equations and dimensional recurrence relations for Feynman integrals are also discussed. We present two novel approaches to decomposition-by-intersections in cases where the maximal cuts admit a 2-form integral representation, with a view towards the extension of the formalism to n-form representations. The decomposition formulae computed through the use of intersection numbers are directly verified to agree with the ones obtained using integration-by-parts identities.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. P. Mastrolia and S. Mizera, Feynman integrals and intersection theory, JHEP 02 (2019) 139 [arXiv:1810.03818] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  2. K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

  3. G. Barucchi and G. Ponzano, Differential equations for one-loop generalized Feynman integrals, J. Math. Phys. 14 (1973) 396 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

  5. A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].

  6. Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

  7. E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].

  8. T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

  9. J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].

  11. O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].

  12. R.N. Lee, Space-time dimensionality D as complex variable: calculating loop integrals using dimensional recurrence relation and analytical properties with respect to D, Nucl. Phys. B 830 (2010) 474 [arXiv:0911.0252] [INSPIRE].

  13. S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

  14. S. Laporta, Calculation of Feynman integrals by difference equations, Acta Phys. Polon. B 34 (2003) 5323 [hep-ph/0311065] [INSPIRE].

  15. V.A. Smirnov, Evaluating Feynman integrals, Springer Tracts Mod. Phys. 211, Springer, Berlin Heidelberg, Germany (2005) [INSPIRE].

  16. A.G. Grozin, Integration by parts: an introduction, Int. J. Mod. Phys. A 26 (2011) 2807 [arXiv:1104.3993] [INSPIRE].

  17. Y. Zhang, Lecture notes on multi-loop integral reduction and applied algebraic geometry, arXiv:1612.02249 [INSPIRE].

  18. A.V. Kotikov and S. Teber, Multi-loop techniques for massless Feynman diagram calculations, Phys. Part. Nucl. 50 (2019) 1 [arXiv:1805.05109] [INSPIRE].

    Article  Google Scholar 

  19. A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction, Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

  20. T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction, JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP 09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  22. D.A. Kosower, Direct solution of integration-by-parts systems, Phys. Rev. D 98 (2018) 025008 [arXiv:1804.00131] [INSPIRE].

  23. X. Liu and Y.-Q. Ma, Determining arbitrary Feynman integrals by vacuum integrals, Phys. Rev. D 99 (2019) 071501 [arXiv:1801.10523] [INSPIRE].

  24. A. Kardos, A new reduction strategy for special negative sectors of planar two-loop integrals without Laporta algorithm, arXiv:1812.05622 [INSPIRE].

  25. H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes within the integration-by-parts approach, Phys. Rev. D 99 (2019) 076011 [arXiv:1805.09182] [INSPIRE].

  26. A. von Manteuffel and C. Studerus, Reduze 2 — distributed Feynman integral reduction, arXiv:1201.4330 [INSPIRE].

  27. R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  28. A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

  29. P. Maierhöfer, J. Usovitsch and P. Uwer, Kira — a Feynman integral reduction program, Comput. Phys. Commun. 230 (2018) 99 [arXiv:1705.05610] [INSPIRE].

  30. A. Georgoudis, K.J. Larsen and Y. Zhang, Azurite: an algebraic geometry based package for finding bases of loop integrals, Comput. Phys. Commun. 221 (2017) 203 [arXiv:1612.04252] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Maierhöfer and J. Usovitsch, Kira 1.2 release notes, arXiv:1812.01491 [INSPIRE].

  32. A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with modular arithmetic, arXiv:1901.07808 [INSPIRE].

  33. M. Argeri et al., Magnus and Dyson series for master integrals, JHEP 03 (2014) 082 [arXiv:1401.2979] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. R.N. Lee, Reducing differential equations for multiloop master integrals, JHEP 04 (2015) 108 [arXiv:1411.0911] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T. Gehrmann, A. von Manteuffel, L. Tancredi and E. Weihs, The two-loop master integrals for \( q\overline{q}\to VV \), JHEP 06 (2014) 032 [arXiv:1404.4853] [INSPIRE].

  36. O. Gituliar and V. Magerya, Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form, Comput. Phys. Commun. 219 (2017) 329 [arXiv:1701.04269] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. R.N. Lee and A.A. Pomeransky, Normalized Fuchsian form on Riemann sphere and differential equations for multiloop integrals, arXiv:1707.07856 [INSPIRE].

  38. L. Adams and S. Weinzierl, The ε-form of the differential equations for Feynman integrals in the elliptic case, Phys. Lett. B 781 (2018) 270 [arXiv:1802.05020] [INSPIRE].

  39. S. Laporta, High-precision calculation of the 4-loop contribution to the electron g − 2 in QED, Phys. Lett. B 772 (2017) 232 [arXiv:1704.06996] [INSPIRE].

  40. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].

    Article  ADS  Google Scholar 

  41. R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Next-to-leading order QCD corrections to the decay width H → Z γ, JHEP 08 (2015) 108 [arXiv:1505.00567] [INSPIRE].

  42. T. Gehrmann, S. Guns and D. Kara, The rare decay H → Z γ in perturbative QCD, JHEP 09 (2015) 038 [arXiv:1505.00561] [INSPIRE].

  43. M. Bonetti, K. Melnikov and L. Tancredi, Three-loop mixed QCD-electroweak corrections to Higgs boson gluon fusion, Phys. Rev. D 97 (2018) 034004 [arXiv:1711.11113] [INSPIRE].

  44. S. Borowka et al., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107 [arXiv:1608.04798] [INSPIRE].

    Article  ADS  Google Scholar 

  45. J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira and J. Streicher, Gluon fusion into Higgs pairs at NLO QCD and the top mass scheme, arXiv:1811.05692 [INSPIRE].

  46. J.M. Lindert, K. Melnikov, L. Tancredi and C. Wever, Top-bottom interference effects in Higgs plus jet production at the LHC, Phys. Rev. Lett. 118 (2017) 252002 [arXiv:1703.03886] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S.P. Jones, M. Kerner and G. Luisoni, Next-to-leading-order QCD corrections to Higgs boson plus jet production with full top-quark mass dependence, Phys. Rev. Lett. 120 (2018) 162001 [arXiv:1802.00349] [INSPIRE].

    Article  ADS  Google Scholar 

  48. F. Maltoni, M.K. Mandal and X. Zhao, Top-quark effects in diphoton production through gluon fusion at NLO in QCD, arXiv:1812.08703 [INSPIRE].

  49. T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116 (2016) 189903] [arXiv:1511.05409] [INSPIRE].

  50. S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229] [INSPIRE].

  51. S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar two-loop five-parton amplitudes from numerical unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic form of planar two-loop five-gluon scattering amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002 [arXiv:1812.04586] [INSPIRE].

  53. D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for a two-loop five-particle amplitude, Phys. Rev. Lett. 122 (2019) 121602 [arXiv:1812.11057] [INSPIRE].

    Article  ADS  Google Scholar 

  54. S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [arXiv:1812.08941] [INSPIRE].

  55. S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case, JHEP 01 (2019) 186 [arXiv:1811.11699] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop five-particle amplitude in N = 8 supergravity, JHEP 03 (2019) 115 [arXiv:1901.05932] [INSPIRE].

  57. S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude in N = 8 supergravity, JHEP 03 (2019) 123 [arXiv:1901.08563] [INSPIRE].

  58. P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].

  59. R.N. Lee and A.A. Pomeransky, Critical points and number of master integrals, JHEP 11 (2013) 165 [arXiv:1308.6676] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. M. Marcolli, Motivic renormalization and singularities, Clay Math. Proc. 11 (2010) 409 [arXiv:0804.4824] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  61. M. Marcolli, Feynman motives, World Scientific, Singapore (2010).

  62. T. Bitoun, C. Bogner, R.P. Klausen and E. Panzer, Feynman integral relations from parametric annihilators, Lett. Math. Phys. 109 (2019) 497 [arXiv:1712.09215] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. K.J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and algebraic geometry, Phys. Rev. D 93 (2016) 041701 [arXiv:1511.01071] [INSPIRE].

  64. J. Bosma, K.J. Larsen and Y. Zhang, Differential equations for loop integrals in Baikov representation, Phys. Rev. D 97 (2018) 105014 [arXiv:1712.03760] [INSPIRE].

  65. H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation, JHEP 04 (2017) 083 [arXiv:1701.07356] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. M. Zeng, Differential equations on unitarity cut surfaces, JHEP 06 (2017) 121 [arXiv:1702.02355] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. J. Bosma, M. Sogaard and Y. Zhang, Maximal cuts in arbitrary dimension, JHEP 08 (2017) 051 [arXiv:1704.04255] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. M. Harley, F. Moriello and R.M. Schabinger, Baikov-Lee representations of cut Feynman integrals, JHEP 06 (2017) 049 [arXiv:1705.03478] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. R.N. Lee and V.A. Smirnov, The dimensional recurrence and analyticity method for multicomponent master integrals: using unitarity cuts to construct homogeneous solutions, JHEP 12 (2012) 104 [arXiv:1209.0339] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [arXiv:1602.01481] [INSPIRE].

  71. A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].

  72. A. Primo and L. Tancredi, Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph, Nucl. Phys. B 921 (2017) 316 [arXiv:1704.05465] [INSPIRE].

  73. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

  74. S. Laporta and E. Remiddi, Analytic treatment of the two loop equal mass sunrise graph, Nucl. Phys. B 704 (2005) 349 [hep-ph/0406160] [INSPIRE].

  75. A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [arXiv:1701.05905] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  76. L. Adams, E. Chaubey and S. Weinzierl, Analytic results for the planar double box integral relevant to top-pair production with a closed top loop, JHEP 10 (2018) 206 [arXiv:1806.04981] [INSPIRE].

    Article  ADS  Google Scholar 

  77. K. Cho and K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s period relations I, Nagoya Math. J. 139 (1995) 67.

  78. K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998) 873.

    MathSciNet  MATH  Google Scholar 

  79. S. Mizera, Scattering amplitudes from intersection theory, Phys. Rev. Lett. 120 (2018) 141602 [arXiv:1711.00469] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  80. K. Aomoto and M. Kita, Theory of hypergeometric functions, Springer Monogr. Math., Springer, Japan (2011).

  81. K. Aomoto, On the structure of integrals of power product of linear functions, Sci. Papers College Gen. Ed. Univ. Tokyo 27 (1977) 49.

  82. I.M. Gelfand, General theory of hypergeometric functions, Dokl. Akad. Nauk SSSR 288 (1986) 14.

    MathSciNet  Google Scholar 

  83. M. Yoshida, Hypergeometric functions, my love: modular interpretations of configuration spaces, Aspects of Mathematics, Vieweg+Teubner Verlag, Germany (2013).

  84. S. Mizera, Inverse of the string theory KLT kernel, JHEP 06 (2017) 084 [arXiv:1610.04230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  85. S. Mizera, Combinatorics and topology of Kawai-Lewellen-Tye relations, JHEP 08 (2017) 097 [arXiv:1706.08527] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. L. de la Cruz, A. Kniss and S. Weinzierl, Properties of scattering forms and their relation to associahedra, JHEP 03 (2018) 064 [arXiv:1711.07942] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  87. P. Tourkine, On integrands and loop momentum in string and field theory, arXiv:1901.02432 [INSPIRE].

  88. R.N. Lee, Calculating multiloop integrals using dimensional recurrence relation and D-analyticity, Nucl. Phys. Proc. Suppl. 205-206 (2010) 135 [arXiv:1007.2256] [INSPIRE].

  89. D.A. Kosower and K.J. Larsen, Maximal unitarity at two loops, Phys. Rev. D 85 (2012) 045017 [arXiv:1108.1180] [INSPIRE].

  90. S. Caron-Huot and K.J. Larsen, Uniqueness of two-loop master contours, JHEP 10 (2012) 026 [arXiv:1205.0801] [INSPIRE].

    Article  ADS  Google Scholar 

  91. S. Abreu, R. Britto, C. Duhr and E. Gardi, Algebraic structure of cut Feynman integrals and the diagrammatic coaction, Phys. Rev. Lett. 119 (2017) 051601 [arXiv:1703.05064] [INSPIRE].

  92. S. Abreu, R. Britto, C. Duhr, E. Gardi and J. Matthew, Coaction for Feynman integrals and diagrams, PoS(LL2018)047 (2018) [arXiv:1808.00069] [INSPIRE].

  93. E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

  94. Y. Goto and K. Matsumoto, The monodromy representation and twisted period relations for Appell’s hypergeometric function F 4, Nagoya Math. J. 217 (2015) 61.

  95. K. Matsumoto, Monodromy and Pfaffian of Lauricella’s F D in terms of the intersection forms of twisted (co)homology groups, Kyushu J. Math. 67 (2013) 367.

  96. Y. Goto, Twisted period relations for Lauricella’s hypergeometric functions F A, Osaka J . Math. 52 (2015) 861.

  97. Y. Goto, Contiguity relations of Lauricella’s F D revisited, Tohoku Math. J. 69 (2017) 287.

  98. K. Matsumoto, Relative twisted homology and cohomology groups associated with Lauricella’s F D, arXiv:1804.00366.

  99. A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

  100. S. Laporta, High precision ϵ-expansions of massive four loop vacuum bubbles, Phys. Lett. B 549 (2002) 115 [hep-ph/0210336] [INSPIRE].

  101. S. Laporta and E. Remiddi, The analytical value of the electron (g − 2) at order α 3 in QED, Phys. Lett. B 379 (1996) 283 [hep-ph/9602417] [INSPIRE].

  102. S. Laporta, High precision ϵ-expansions of three loop master integrals contributing to the electron g − 2 in QED, Phys. Lett. B 523 (2001) 95 [hep-ph/0111123] [INSPIRE].

  103. D.J. Broadhurst, J. Fleischer and O.V. Tarasov, Two loop two point functions with masses: asymptotic expansions and Taylor series, in any dimension, Z. Phys. C 60 (1993) 287 [hep-ph/9304303] [INSPIRE].

  104. U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [INSPIRE].

  105. C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, JHEP 01 (2007) 082 [hep-ph/0611236] [INSPIRE].

  106. V.A. Smirnov, Analytical result for dimensionally regularized massless on shell double box, Phys. Lett. B 460 (1999) 397 [hep-ph/9905323] [INSPIRE].

  107. V.A. Smirnov and O.L. Veretin, Analytical results for dimensionally regularized massless on-shell double boxes with arbitrary indices and numerators, Nucl. Phys. B 566 (2000) 469 [hep-ph/9907385] [INSPIRE].

  108. M. Becchetti and R. Bonciani, Two-loop master integrals for the planar QCD massive corrections to di-photon and di-jet hadro-production, JHEP 01 (2018) 048 [arXiv:1712.02537] [INSPIRE].

    Article  ADS  Google Scholar 

  109. D.H. Bailey and J.M. Borwein, PSLQ: an algorithm to discover integer relations, tech. rep., (2009).

  110. J.M. Henn and V.A. Smirnov, Analytic results for two-loop master integrals for Bhabha scattering I, JHEP 11 (2013) 041 [arXiv:1307.4083] [INSPIRE].

    Article  ADS  Google Scholar 

  111. K. Melnikov, L. Tancredi and C. Wever, Two-loop gg → Hg amplitude mediated by a nearly massless quark, JHEP 11 (2016) 104 [arXiv:1610.03747] [INSPIRE].

  112. R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].

  113. C.G. Papadopoulos, D. Tommasini and C. Wever, The pentabox master integrals with the simplified differential equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404] [INSPIRE].

    ADS  Google Scholar 

  114. L. Mattiazzi, Multiparticle scattering amplitudes at two-loop, master thesis, Univ. of Padua, Padua, Italy (2018).

  115. F. Gasparotto, A modern approach to Feynman integrals and differential equations, master thesis, Univ. of Padua, Padua, Italy (2018).

  116. D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic result for the nonplanar hexa-box integrals, JHEP 03 (2019) 042 [arXiv:1809.06240] [INSPIRE].

  117. P. Orlik and H. Terao, Arrangements of hyperplanes, Grund. math. Wiss., Springer, Berlin Heidelberg, Germany (2013).

  118. P. Mastrolia, Double-cut of scattering amplitudes and Stokes’ theorem, Phys. Lett. B 678 (2009) 246 [arXiv:0905.2909] [INSPIRE].

  119. P. Mastrolia, Unitarity-cuts and Berry’s phase, Lett. Math. Phys. 91 (2010) 199 [arXiv:0906.3789] [INSPIRE].

  120. R.K. Ellis, Z. Kunszt, K. Melnikov and G. Zanderighi, One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts, Phys. Rept. 518 (2012) 141 [arXiv:1105.4319] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  121. C. Duhr, Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes, JHEP 08 (2012) 043 [arXiv:1203.0454] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  122. S. Abreu, R. Britto, C. Duhr and E. Gardi, Diagrammatic Hopf algebra of cut Feynman integrals: the one-loop case, JHEP 12 (2017) 090 [arXiv:1704.07931] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  123. J. Broedel, C. Duhr, F. Dulat, B. Penante and L. Tancredi, Elliptic Feynman integrals and pure functions, JHEP 01 (2019) 023 [arXiv:1809.10698] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  124. J.L. Bourjaily, Y.-H. He, A.J. Mcleod, M. Von Hippel and M. Wilhelm, Traintracks through Calabi-Yau manifolds: scattering amplitudes beyond elliptic polylogarithms, Phys. Rev. Lett. 121 (2018) 071603 [arXiv:1805.09326] [INSPIRE].

  125. J. Milnor, Morse theory, Ann. Math. Stud. 51, Princeton University Press, Princeton, NJ, U.S.A. (2016).

  126. Y. Zhang, private communication.

  127. R. Hwa and V. Teplitz, Homology and Feynman integrals, Mathematical Physics Monograph Series, W.A. Benjamin, U.S.A. (1966).

  128. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

  129. J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Dipartimento di Fisica e Astronomia, Università di Padova, Via Marzolo 8, 35131, Padova, Italy

    Hjalte Frellesvig, Federico Gasparotto, Stefano Laporta, Manoj K. Mandal, Pierpaolo Mastrolia & Luca Mattiazzi

  2. INFN, Sezione di Padova, Via Marzolo 8, 35131, Padova, Italy

    Hjalte Frellesvig, Federico Gasparotto, Stefano Laporta, Manoj K. Mandal, Pierpaolo Mastrolia & Luca Mattiazzi

  3. Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON, N2L 2Y5, Canada

    Sebastian Mizera

  4. Department of Physics & Astronomy, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, Canada

    Sebastian Mizera

Authors
  1. Hjalte Frellesvig
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Federico Gasparotto
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Stefano Laporta
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Manoj K. Mandal
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Pierpaolo Mastrolia
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Luca Mattiazzi
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Sebastian Mizera
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pierpaolo Mastrolia.

Additional information

ArXiv ePrint: 1901.11510

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frellesvig, H., Gasparotto, F., Laporta, S. et al. Decomposition of Feynman integrals on the maximal cut by intersection numbers. J. High Energ. Phys. 2019, 153 (2019). https://doi.org/10.1007/JHEP05(2019)153

Download citation

  • Received: 13 February 2019

  • Revised: 10 April 2019

  • Accepted: 05 May 2019

  • Published: 24 May 2019

  • DOI: https://doi.org/10.1007/JHEP05(2019)153

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Scattering Amplitudes
  • Differential and Algebraic Geometry
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.